Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001
Citation: JIANG Bo, JIN Yongcan. Research progress of lignin functional materials based on its structural properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. doi: 10.13801/j.cnki.fhclxb.20220321.001

Research progress of lignin functional materials based on its structural properties

doi: 10.13801/j.cnki.fhclxb.20220321.001
  • Received Date: 2022-01-19
  • Accepted Date: 2022-03-15
  • Rev Recd Date: 2022-02-25
  • Available Online: 2022-03-22
  • Publish Date: 2022-07-30
  • Lignin is the most abundant renewable aromatic resource in nature, its macromolecular structure is composed of three phenylpropane units (guaiacyl, syringyl and p-hydroxyphenyl) that connected mainly by ether and carbon-carbon bonds, featuring natural biological activities, hydrophilcity and hydrophobicity, nano-scale adjustability, flexibility in structural modification and biocompatibility. Recent progress on functional materials of lignin is critically discussed based on its structural properties. Firstly, the chemical composition and distribution of lignin in plant cell walls are summarized to elucidating its structural characteristics. Subsequently, recent achievements and challenges on advanced materials based on direct functional application, structural modification, and carbonization are discussed. Finally, the recent progress of lignin used in other fields is briefly summarized, meanwhile, the main points towards future developments and directions in advanced materials of lignin are also highlighted.

     

  • loading
  • [1]
    ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science,2021,14(1):262-292.
    [2]
    VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology,2019,56:230-239. doi: 10.1016/j.copbio.2019.02.018
    [3]
    袁同琦, 孙卓华, 戴林. 木质素化学 [M]. 北京: 中国轻工业出版社, 2021.

    YUAN Tongqi, SUN Zhuohua, DAI Lin. Lignin chemistry [M]. Beijing: China Light Industry Press Ltd. , 2021 (in Chinese).
    [4]
    裴继诚, 平清伟, 唐爱民, 等. 植物纤维化学(第五版) [M]. 北京: 中国轻工业出版社, 2020.PEI Jicheng, PING Qingwei, TANG Aimin, et al. Lignocellulosic chemistry (Fifth edition) [M]. Beijing: China Light Industry Press Ltd. , 2020 (in Chinese).
    [5]
    MOTTIAR Y, VANHOLME R, BOERJAN W, et al. Designer lignins: Harnessing the plasticity of lignification[J]. Current Opinion in Biotechnology,2016,37:190-200. doi: 10.1016/j.copbio.2015.10.009
    [6]
    BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003,54:519-546. doi: 10.1146/annurev.arplant.54.031902.134938
    [7]
    RALPH J, LAPIERRE C, BOERJAN W. Lignin structure and its engineering [J]. Current Opinion in Biotechnology, 2019, 56: 240-249.
    [8]
    姜波, 曹婷月, 谷峰, 等. 碳酸钠预处理对麦草酶水解及木质素结构的影响 [J]. 南京林业大学学报(自然科学版), 2016, 40(6): 135-140.

    JIANG Bo, CAO Tingyue, GU Feng, et al. Effects of sodium carbonate pretreatment on enzymatic hydrolysis and lignin structure of wheat straw [J]. Journal of Nanjing Forestry University (Natural Sciences Edition) 2016, 40(6): 135-140 (in Chinese).
    [9]
    JIANG B, WANG W, GU F, et al. Comparison of the substrate enzymatic digestibility and lignin structure of wheat straw stems and leaves pretreated by green liquor [J]. Bioresource Technology, 2016, 199: 181-187.
    [10]
    JIANG B, CAO T Y, GU F, et al. Comparison of the structural characteristics of cellulolytic enzyme lignin preparations isolated from wheat straw stem and leaf [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 342-349.
    [11]
    OJAGH S M, NÚÑEZ-FLORES R, LÓPEZ-CABALLERO M E, et al. Lessening of high-pressure-induced changes in Atlantic salmon muscle by the combined use of a fish gelatin-lignin film[J]. Food Chemistry,2011,125(2):595-606. doi: 10.1016/j.foodchem.2010.08.072
    [12]
    WANG Y, SUN S, LI F, et al. Production of vanillin from lignin: The relationship between β-O-4 linkages and vanillin yield[J]. Industrial Crops and Products,2018,116:116-121. doi: 10.1016/j.indcrop.2018.02.043
    [13]
    AZADFAR M, GAO A H, BULE M V, et al. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol[J]. International Journal of Biological Macromolecules,2015,75:58-66. doi: 10.1016/j.ijbiomac.2014.12.049
    [14]
    CHANDNA S, THAKUR N S, REDDY Y N, et al. Engineering lignin stabilized bimetallic nanocomplexes: Structure, mechanistic elucidation, antioxidant, and antimicrobial potential[J]. ACS Biomaterials Science & Engineering,2019,5(7):3212-3227.
    [15]
    LI M, SUN S, XU F, et al. Microwave-assisted organic acid extraction of lignin from bamboo: Structure and antioxidant activity investigation[J]. Food Chemistry,2012,134(3):1392-1398. doi: 10.1016/j.foodchem.2012.03.037
    [16]
    LI Z, ZHANG J, QIN L, et al. Enhancing antioxidant performance of lignin by enzymatic treatment with laccase[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2591-2595.
    [17]
    JIANG B, ZHANG Y, ZHAO H, et al. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex[J]. International Journal of Biological Macromolecules,2019,139:21-29. doi: 10.1016/j.ijbiomac.2019.07.134
    [18]
    FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science,2018,93:233-269. doi: 10.1016/j.pmatsci.2017.12.001
    [19]
    DEAN J C, NAVOTNAYA P, PAROBEK A P, et al. Ultraviolet spectroscopy of fundamental lignin subunits: Guaiacol, 4-methylguaiacol, syringol, and 4-methylsyringol[J]. Journal of Chemical Physics,2013,139(14):16.
    [20]
    SUN Y, YANG L, LU X, et al. Biodegradable and renewable poly (lactide)-lignin composites: Synthesis, interface and toughening mechanism[J]. Journal of Materials Chemistry A,2015,3(7):3699-3709. doi: 10.1039/C4TA05991C
    [21]
    CHUNG Y L, OLSSON J V, LI R J, et al. A renewable lignin–lactide copolymer and application in biobased composites[J]. ACS Sustainable Chemistry & Engineering,2013,1(10):1231-1238.
    [22]
    TIAN D, HU J, BAO J, et al. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites[J]. Biotechnology for Biofuels,2017,10:192. doi: 10.1186/s13068-017-0876-z
    [23]
    EWULONU C M, LIU X, WU M, et al. Lignin-containing cellulose nanomaterials: A promising new nanomaterial for numerous applications[J]. Journal of Bioresources and Bioproducts,2019,4(1):3-10. doi: 10.21967/jbb.v4i1.186
    [24]
    MI R, CHEN C, KEPLINGER T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J]. Nature Communications,2020,11:3836. doi: 10.1038/s41467-020-17513-w
    [25]
    岳凤霞, 林敏生, 钱勇, 等. 木质素抗紫外辐射性能应用研究进展[J]. 林业工程学报, 2021, 6(02):12-20.

    YUE Fengxia, LIN Minsheng, QIAN Yong, et al. Recent advances of anti-UV radiation of lignin[J]. Journal of Forestry Engineering,2021,6(02):12-20(in Chinese).
    [26]
    YANG W, FORTUNATI E, GAO D, et al. Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3502-3514.
    [27]
    AFEWERKI S, WANG X, RUIZ-ESPARZA G U, et al. Combined catalysis for engineering bioinspired, lignin-based, long-lasting, adhesive, self-mending, antimicrobial hydrogels[J]. ACS Nano,2020,14(12):17004-17017. doi: 10.1021/acsnano.0c06346
    [28]
    ZHANG L, MA J, LYU, B, et al. A sustainable waterborne vanillin-eugenol-acrylate miniemulsion with suitable antibacterial properties as a substitute for the styrene-acrylate emulsion[J]. Green Chemistry,2021,23(19):7576-7588. doi: 10.1039/D1GC01766G
    [29]
    DUMITRIU S, POPA V. Polymeric biomaterials: Structure and function [M]. Boca Raton: CRC Press, 2013.
    [30]
    GREGOROVA A, REDIK S, SEDLARIK V, et al. Lignin-containing polyethylene films with antibacterial activity [C]. Brno, Czech Repubic: NANOCON 2011-Conference Proceedings, 3rd International Conference, 2011: 184-189.
    [31]
    RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology,2015,10:817-823. doi: 10.1038/nnano.2015.141
    [32]
    HU S, HSIEH Y. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent[J]. Carbohydrate Polymers,2015,131:134-141. doi: 10.1016/j.carbpol.2015.05.060
    [33]
    KU H, WANG H, PATTARACHAIYAKOOP N, et al. A review on the tensile properties of natural fiber reinforced polymer composites[J]. Composites Part B: Engineering,2011,42(4):856-873. doi: 10.1016/j.compositesb.2011.01.010
    [34]
    LI H, LIANG Y, LI P, et al. Conversion of biomass lignin to high-value polyurethane: A review[J]. Journal of Bioresources and Bioproducts,2020,5(2):163-179.
    [35]
    MALDHURE A V, EKHE J D, DEENADAYALAN E. Mechanical properties of polypropylene blended with esterified and alkylated lignin[J]. Journal of Applied Polymer Science,2012,125(3):1701-1712. doi: 10.1002/app.35633
    [36]
    SAILAJA R R N. Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: Mechanical and thermal properties[J]. Polymer International,2005,54(12):1589-1598. doi: 10.1002/pi.1864
    [37]
    SONG J, CHEN C, ZHU S, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature,2018,554:224. doi: 10.1038/nature25476
    [38]
    JIANG B, CHEN C, LIANG Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials,2020,30(4):1906307. doi: 10.1002/adfm.201906307
    [39]
    WANG Q, DU H, ZHANG F, et al. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method[J]. Journal of Materials Chemistry A,2018,6(27):13021-13030. doi: 10.1039/C8TA01986J
    [40]
    SADEGHIFAR H, VENDITTI R, JUR J, et al. Cellulose-lignin biodegradable and flexible UV protection film[J]. ACS Sustainable Chemistry & Engineering,2017,5(1):625-631.
    [41]
    MUENCH S, WILD A, FRIEBE C, et al. Polymer-based organic batteries[J]. Chemical Reviews,2016,116(16):9438-9484. doi: 10.1021/acs.chemrev.6b00070
    [42]
    LIN K, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science,2015,349(6255):1529-1532. doi: 10.1126/science.aab3033
    [43]
    LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials,2017,16:841-848. doi: 10.1038/nmat4919
    [44]
    MILCZAREK G, INGANÄS O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks[J]. Science,2012,335(6075):1468-1471. doi: 10.1126/science.1215159
    [45]
    MIROSHNIKOV M, DIVYA K P, BABU G, et al. Power from nature: Designing green battery materials from electroactive quinone derivatives and organic polymers[J]. Journal of Materials Chemistry A,2016,4(32):12370-12386. doi: 10.1039/C6TA03166H
    [46]
    MUKHOPADHYAY A, HAMEL J, KATAHIRA R, et al. Metal-free aqueous flow battery with novel ultrafiltered lignin as electrolyte[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5394-5400.
    [47]
    YE J, CHENG Y, SUN L, et al. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery[J]. Journal of Membrane Science,2019,572:110-118. doi: 10.1016/j.memsci.2018.11.009
    [48]
    LU Q, ZHU M, ZU Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry,2012,135(1):63-67. doi: 10.1016/j.foodchem.2012.04.070
    [49]
    YEARLA S R, PADMASREE K. Preparation and characterisation of lignin nanoparticles: Evaluation of their potential as antioxidants and UV protectants[J]. Journal of Experimental Nanoscience,2016,11(4):289-302. doi: 10.1080/17458080.2015.1055842
    [50]
    GUPTA A K, MOHANTY S, NAYAK S K. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites[J]. RSC Advances,2015,5(69):56028-56036. doi: 10.1039/C5RA07828H
    [51]
    QIAN Y, QIU X, ZHONG X, et al. Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics[J]. Industrial & Engineering Chemistry Research,2015,54(48):12025-12030.
    [52]
    YU J, WANG J, WANG C, et al. UV-absorbent lignin-based multi-arm star thermoplastic elastomers[J]. Macromolecular Rapid Communications,2015,36(4):398-404. doi: 10.1039/C4GC01242A
    [53]
    AGO M, HUAN S, BORGHEI M, et al. High-throughput synthesis of lignin particles (approximately 30 nm to approximately 2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces,2016,8(35):23302-23310.
    [54]
    FRANGVILLE C, RUTKEVIČIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem,2012,13(18):4235-4243. doi: 10.1002/cphc.201200537
    [55]
    TORTORA M, CAVALIERI F, MOSESSO P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules,2014,15(5):1634-1643. doi: 10.1021/bm500015j
    [56]
    TEN E, LING C, WANG Y, et al. Lignin nanotubes as vehicles for gene delivery into human cells[J]. Biomacromolecules,2014,15(1):327-338. doi: 10.1021/bm401555p
    [57]
    LIU X, YIN H, ZHANG Z, et al. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery[J]. Colloids and Surfaces B: Biointerfaces,2015,125:230-237. doi: 10.1016/j.colsurfb.2014.11.018
    [58]
    KIM S, FERNANDES M M, MATAMÁ T, et al. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications[J]. Colloids and Surfaces B: Biointerfaces,2013,103:1-8. doi: 10.1016/j.colsurfb.2012.10.033
    [59]
    LI H, DENG Y, LIU B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):1946-1953.
    [60]
    CHEN N, DEMPERE L A, TONG Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering,2016,4(10):5204-5211.
    [61]
    LINTINEN K, LATIKKA M, SIPPONEN M H, et al. Structural diversity in metal-organic nanoparticles based on iron isopropoxide treated lignin[J]. RSC Advances,2016,6(38):31790-31796. doi: 10.1039/C6RA03865D
    [62]
    FIGUEIREDO P, LINTINEN K, KIRIAZIS A, et al. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells[J]. Biomaterials,2017,121:97-108. doi: 10.1016/j.biomaterials.2016.12.034
    [63]
    EL-ZAWAWY W K. Preparation of hydrogel from green polymer[J]. Polymers for Advanced Technologies,2005,16(1):48-54. doi: 10.1002/pat.537
    [64]
    EL-ZAWAWY W K, IBRAHIM M M. Preparation and characterization of novel polymer hydrogel from industrial waste and copolymerization of poly(vinyl alcohol) and polyacrylamide[J]. Journal of Applied Polymer Science,2012,124(5):4362-4370. doi: 10.1002/app.35481
    [65]
    GRISHECHKO L I, AMARAL-LABAT G, SZCZUREK A, et al. New tannin-lignin aerogels[J]. Industrial Crops and Products,2013,41:347-355. doi: 10.1016/j.indcrop.2012.04.052
    [66]
    CIOLACU D, OPREA A M, ANGHEL N, et al. New cellulose-lignin hydrogels and their application in controlled release of polyphenols[J]. Materials Science and Engineering: C,2012,32(3):452-463. doi: 10.1016/j.msec.2011.11.018
    [67]
    SUN X, HAO Y, CAO Y, et al. Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution[J]. International Journal of Biological Macromolecules,2019,127:511-519. doi: 10.1016/j.ijbiomac.2019.01.058
    [68]
    GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic redox catechol chemistry[J]. Nature communications,2019,10:1487. doi: 10.1038/s41467-019-09351-2
    [69]
    DIAO B, ZHANG Z, ZHU J, et al. Biomass-based thermogelling copolymers consisting of lignin and grafted poly(N-isopropylacrylamide), poly(ethylene glycol), and poly(propylene glycol)[J]. RSC Advances,2014,4(81):42996-43003. doi: 10.1039/C4RA08673B
    [70]
    RASCHIP I E, HITRUC G E, VASILE C, et al. Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels[J]. International Journal of Biological Macromolecules,2013,54:230-237. doi: 10.1016/j.ijbiomac.2012.12.036
    [71]
    QURAISHI S, MARTINS M, BARROS A A, et al. Novel non-cytotoxic alginate-lignin hybrid aerogels as scaffolds for tissue engineering[J]. The Journal of Supercritical Fluids,2015,105:1-8. doi: 10.1016/j.supflu.2014.12.026
    [72]
    TOFAIL S A M, KOUMOULOS E P, BANDYOPADHYAY A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Materials Today,2017,21(1):22-37.
    [73]
    NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [74]
    LIND J U, BUSBEE T A, VALENTINE A D, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nature Materials,2017,16:303-308. doi: 10.1038/nmat4782
    [75]
    齐俊梅, 姚雪丽, 陈辉辉, 等. 3D打印聚合物材料的研究进展[J]. 热固性树脂, 2019, 34(2):60-63.

    QI Junmei, YAO Xueli, CHEN Huihui, et al. Research progress of polymeric materials for 3D printing technology[J]. Thermosetting Resin,2019,34(2):60-63(in Chinese).
    [76]
    WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering,2017,110:442-458. doi: 10.1016/j.compositesb.2016.11.034
    [77]
    GO J, SCHIFFRES S N, STEVENS A G, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design[J]. Additive Manufacturing,2017,16:1-11. doi: 10.1016/j.addma.2017.03.007
    [78]
    SUN Q, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry,2016,18(18):5015-5024. doi: 10.1039/C6GC00977H
    [79]
    TRAN C D, CHEN J, KEUM J K, et al. A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers[J]. Advanced Functional Materials,2016,26(16):2677-2685. doi: 10.1002/adfm.201504990
    [80]
    NGUYEN N A, MEEK K M, BOWLAND C C, et al. An acrylonitrile-butadiene-lignin renewable skin with programmable and switchable electrical conductivity for stress/strain-sensing applications[J]. Macromolecules,2018,51(1):115-127. doi: 10.1021/acs.macromol.7b02336
    [81]
    NGUYEN N A, BARNES S H, BOWLAND C C, et al. A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability[J]. Science Advances,2018,4(12):eaat4967. doi: 10.1126/sciadv.aat4967
    [82]
    SUTTON J T, RAJAN K, HARPER D P, et al. Lignin-containing photoactive resins for 3D printing by stereolithography[J]. ACS Applied Materials & Interfaces,2018,10(42):36456-36463.
    [83]
    JIANG B, YAO Y, LIANG Z, et al. Lignin-based direct ink printed structural scaffolds[J]. Small,2020,16(31):1907212. doi: 10.1002/smll.201907212
    [84]
    JIANG B, HUANG H, GONG W, et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution[J]. Advanced Functional Materials,2021,31(45):2105045. doi: 10.1002/adfm.202105045
    [85]
    FENG Q, CHEN F, WU H. Preparation and characterization of a temperature-sensitive lignin-based hydrogel[J]. Bioresources,2011,6:4942-4952.
    [86]
    GAO G, KARAASLAN M A, KADLA J F, et al. Enzymatic synthesis of ionic responsive lignin nanofibres through surface poly (N-isopropylacrylamide) immobilization[J]. Green Chemistry,2014,16(8):3890-3898. doi: 10.1039/C4GC00757C
    [87]
    DALLMEYER I, CHOWDHURY S, KADLA J F. Preparation and characterization of kraft lignin-based moisture-responsive films with reversible shape-change capability[J]. Biomacromolecules,2013,14(7):2354-2363. doi: 10.1021/bm400465p
    [88]
    QIAN Y, ZHANG Q, QIU X, et al. CO2-responsive diethylaminoethyl-modified lignin nanoparticles and their application as surfactants for CO2/N2-switchable pickering emulsions[J]. Green Chemistry,2014,16(12):4963-4968.
    [89]
    LI H, SIVASANKARAPILLAI G, MCDONALD A G. Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer[J]. Industrial Crops and Products,2015,67:143-154. doi: 10.1016/j.indcrop.2015.01.031
    [90]
    SIVASANKARAPILLAI G, LI H, MCDONALD A G. Lignin-based triple shape memory polymers[J]. Biomacromolecules,2015,16(9):2735-2742. doi: 10.1021/acs.biomac.5b00655
    [91]
    NGUYEN N A, MEEK K M, BOWLAND C C, et al. Responsive lignin for shape memory applications[J]. Polymer,2019,160:210-222. doi: 10.1016/j.polymer.2018.11.055
    [92]
    XU Y, ODELIUS K, HAKKARAINEN M. One-pot synthesis of lignin thermosets exhibiting widely tunable mechanical properties and shape memory behavior[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13456-13463.
    [93]
    CORREA C R, OTTO T, KRUSE A. Influence of the biomass components on the pore formation of activated carbon[J]. Biomass & Bioenergy,2017,97:53-64.
    [94]
    ABIOYE A M, ANI F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable & Sustainable Energy Reviews,2015,52:1282-1293.
    [95]
    GUO N, LI M, SUN X, et al. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry,2017,19(11):2595-2602. doi: 10.1039/C7GC00506G
    [96]
    CHATTERJEE S, SAITO T. Lignin-derived advanced carbon materials [J]. ChemSusChem, 2015, 8(23): 3941-3958.
    [97]
    张召慧, 吴朝军, 于冬梅, 等. 木质素基吸附剂的研究进展[J]. 中国造纸, 2021, 40(01):106-117.

    ZHANG Zhaohui, WU Chaojun, YU Dongmei, et al. Research progress in the preparation of lignin-based adsorbents[J]. China Pulp & Paper,2021,40(01):106-117(in Chinese).
    [98]
    CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chemistry,2013,15(1):125-136. doi: 10.1039/C2GC36332A
    [99]
    SANGON S, HUNT A J, ATTARD T M, et al. Valorization of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal[J]. Journal of Cleaner Production,2018,172:1128-1139. doi: 10.1016/j.jclepro.2017.10.210
    [100]
    KIJIMA M, HIRUKAWA T, HANAWA F, et al. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials[J]. Bioresource Technology,2011,102(10):6279-6285. doi: 10.1016/j.biortech.2011.03.023
    [101]
    CARROTT P J M, SUHAS, CARROTT M M L R, et al. Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins[J]. Journal of Analytical and Applied Pyrolysis,2008,82(2):264-271. doi: 10.1016/j.jaap.2008.04.004
    [102]
    SUHAS, CARROTT P J M, CARROTT M M L R. Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin[J]. Carbon,2009,47(4):1012-1017. doi: 10.1016/j.carbon.2008.12.001
    [103]
    GAO Y, YU Q, GAO B, et al. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption[J]. Chemical Engineering Journal,2013,217:345-353. doi: 10.1016/j.cej.2012.09.038
    [104]
    SUN Y, YANG G, ZHANG J, et al. Activated carbon preparation from lignin by H3PO4 activation and its application to gas separation[J]. Chemical Engineering & Technology,2012,35(2):309-316.
    [105]
    GONZALEZ-SERRANO E, CORDERO T, RODRIGUEZ-MIRASOL J, et al. Development of porosity upon chemical activation of kraft lignin with ZnCl2[J]. Industrial & Engineering Chemistry Research,1997,36(11):4832-4838.
    [106]
    MAHMOUDI K, HAMDI N, KRIAA A, et al. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment[J]. Russian Journal of Physical Chemistry A,2012,86:1294-1300. doi: 10.1134/S0036024412060180
    [107]
    LIOU T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chemical Engineering Journal,2010,158(2):129-142. doi: 10.1016/j.cej.2009.12.016
    [108]
    YANG J, QIU K. Development of high surface area mesoporous activated carbons from herb residues[J]. Chemical Engineering Journal,2011,167(1):148-154. doi: 10.1016/j.cej.2010.12.013
    [109]
    SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: Current trend, perspectives and opportunities[J]. Bioresource Technology,2019,272:570-581. doi: 10.1016/j.biortech.2018.09.139
    [110]
    曹其平, 周景辉. 木质素基碳纤维研究进展[J]. 中国造纸, 2019, 38(06):79-83.

    CAO Qiping, ZHOU Jinghui. Research progress in lignin-based carbon fibers[J]. China Pulp & Paper,2019,38(06):79-83(in Chinese).
    [111]
    DERBYSHIRE F, ANDREWS R, JACQUES D, et al. Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors[J]. Fuel,2001,80(3):345-356. doi: 10.1016/S0016-2361(00)00099-5
    [112]
    RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science,2014,344(6185):1246843. doi: 10.1126/science.1246843
    [113]
    GUPTA V B. Melt-spinning processes [M]//GUPTA V B, KOTHARI V K. Manufactured fibre technology. Berlin: Springer-Verlag, 1997.
    [114]
    KUBO S, URAKI Y, SANO Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping[J]. Carbon,1998,36(7-8):1119-1124. doi: 10.1016/S0008-6223(98)00086-4
    [115]
    DALLMEYER I, KO F, KADLA J F. Correlation of elongational fluid properties to fiber diameter in electrospinning of softwood Kraft lignin solutions[J]. Industrial & Engineering Chemistry Research,2014,53(7):2697-2705.
    [116]
    LU C, BLACKWELL C, REN Q, et al. Effect of the coagulation bath on the structure and mechanical properties of gel-spun lignin/poly(vinyl alcohol) fibers[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):2949-2959.
    [117]
    OTANI S, FUKUOKA Y, IGARASHI B, et al. Method for producing carbonized Lignin Fiber: United States Patent, US 3461082DA[P]. 1969-08-12.
    [118]
    JIN J, OGALE A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science,2018,135(8):45903. doi: 10.1002/app.45903
    [119]
    JANG S, KO S, JEON Y P, et al. Evaluating the stabilization of isotropic pitch fibers for optimal tensile properties of carbon fibers[J]. Journal of Industrial and Engineering Chemistry,2017,45:316-322. doi: 10.1016/j.jiec.2016.09.042
    [120]
    AKPAN E I, ADEOSUN S O. Sustainable lignin for carbon fibers principles, techniques, and applications [M]. Berlin: Springer, 2019.
    [121]
    SUDO K, SHIMIZU K. A new carbon fiber from lignin[J]. Journal of Applied Polymer Science,1992,44(1):127-134. doi: 10.1002/app.1992.070440113
    [122]
    URAKI Y, KUBO S, NIGO N, et al. Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping[J]. Holzforschung,1995,49(4):343-350. doi: 10.1515/hfsg.1995.49.4.343
    [123]
    BAKER D A, GALLEGO N C, BAKER F S. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber[J]. Journal of Applied Polymer Science,2012,124(1):227-234. doi: 10.1002/app.33596
    [124]
    NORBERG I, NORDSTRÖM Y, DROUGGE R, et al. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production[J]. Journal of Applied Polymer Science,2013,128(6):3824-3830. doi: 10.1002/app.38588
    [125]
    ZHANG M, OGALE A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon,2014,69:626-629. doi: 10.1016/j.carbon.2013.12.015
    [126]
    XIA K, OUYANG Q, CHEN Y, et al. Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):159-168.
    [127]
    NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules,2017,103:1032-1043. doi: 10.1016/j.ijbiomac.2017.05.155
    [128]
    ESPINOZA-ACOSTA J, TORRES-CHÁVEZ P, OLMEDO-MARTÍNEZ J L, et al. Lignin in storage and renewable energy applications: A review[J]. Journal of Energy Chemistry,2018,27(5):1422-1438. doi: 10.1016/j.jechem.2018.02.015
    [129]
    LAI C, ZHOU Z, ZHANG L, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources,2014,247:134-141. doi: 10.1016/j.jpowsour.2013.08.082
    [130]
    SAHA D, LI Y, BI Z, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir,2014,30(3):900-910. doi: 10.1021/la404112m
    [131]
    HU S, ZHANG S, PAN N, et al. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes[J]. Journal of Power Sources,2014,270:106-112. doi: 10.1016/j.jpowsour.2014.07.063
    [132]
    CHEN F, ZHOU W, YAO H, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry,2013,15(11):3057-3063. doi: 10.1039/c3gc41080c
    [133]
    MILCZAREK G, NOWICKI M. Carbon nanotubes/kraft lignin composite: Characterization and charge storage properties[J]. Materials Research Bulletin,2013,48(10):4032-4038. doi: 10.1016/j.materresbull.2013.06.022
    [134]
    YE R, CHYAN Y, ZHANG J, et al. Laser-induced graphene formation on wood[J]. Advanced Materials,2017,29(37):1702211. doi: 10.1002/adma.201702211
    [135]
    ZHANG W, LEI Y, MING F, et al. Lignin laser lithography: A direct-write method for fabricating 3D graphene electrodes for microsupercapacitors[J]. Advanced Energy Materials,2018,8(27):1801840. doi: 10.1002/aenm.201801840
    [136]
    WANG S, YANG L, STUBBS L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2013,5(23):12275-12282.
    [137]
    TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material[J]. Advanced Functional Materials,2014,24(1):86-94. doi: 10.1002/adfm.201301420
    [138]
    JIN J, YU S, SHI Z, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807. doi: 10.1016/j.jpowsour.2014.08.119
    [139]
    YABUUCHIHTTP N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114(23):11636-11682. doi: 10.1021/cr500192f
    [140]
    LI Y, HU Y, LI H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(1):96-104.
    [141]
    LIN X, LIU Y, TAN H, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon,2020,157:316-323. doi: 10.1016/j.carbon.2019.10.045
    [142]
    MINTZ K J, ZHOU Y, LEBLANC R M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure[J]. Nanoscale,2019,11(11):4634-4652. doi: 10.1039/C8NR10059D
    [143]
    DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry,2018,8:96-109. doi: 10.1016/j.mtchem.2018.03.003
    [144]
    ZHAO S, CHEN X, ZHANG C, et al. Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications[J]. ACS Applied Materials & Interfaces,2021,13(51):61565-61577.
    [145]
    LIU W, NING C, SANG R, et al. Lignin-derived graphene quantum dots from phosphous acid-assisted hydrothermal pretreatment and their application in photocatalysis[J]. Industrial Crops & Products,2021,171:113963.
    [146]
    CHAO W, LI Y, SUN X. Enhanced wood-derived photothermal evaporation system by in-situ incorporated lignin carbon quantum dots[J]. Chemical Engineering Journal,2021,405:126703. doi: 10.1016/j.cej.2020.126703
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1535) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return