Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
BAO Guoqing, WU Chunxin, ZHAO Deming. Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001
Citation: BAO Guoqing, WU Chunxin, ZHAO Deming. Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 219-231. doi: 10.13801/j.cnki.fhclxb.20220117.001

Preparation of magnetic Fe3O4 nanocomposites and their adsorption to Pb(II)

doi: 10.13801/j.cnki.fhclxb.20220117.001
Funds:  Zhejiang Natural Science Foundation (LY19B070006); Zhejiang Basic Public Welfare Research Program (LGF20B070003)
  • Received Date: 2021-12-13
  • Accepted Date: 2022-01-07
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-01-18
  • Publish Date: 2023-01-15
  • In order to solve the problem that Fe3O4 nanoparticles were easy to be corroded and agglomerated, it was decided to functionalize it. Magnetic nano-Fe3O4 particles were prepared under ultrasonic irradiation, then 2-diaminobenzenesulfonic acid (SP) and m-phenylenediamine (mPD) monomers were selected as introduction agents to prepare metal matrix composites Fe3O4-mPD/SP(95∶5), which were rich in amino, sulfonic acid and imine active functional groups, and nanocomposites were characterized by FTIR, TEM, XRD and other methods. The characterized results show that the magnetic nanocomposites prepared by ultrasonic strengthening method have the characteristics of good stability, high reaction activity, small particle size and larger specific surface area. The adsorption properties of Pb(II) by Fe3O4-mPD/SP were investigated which showed that the molar percentage of SP and mPD, reaction temperature, sorts of competitive cations and the pH value of solution all had effect on the adsorption of Pb(II). The adsorption isotherm conforms to the Freundlich model, and the adsorption of Pb(II) is a spontaneous process, Gibbs free energy ∆G0<0. It is found that the adsorption behavior of Pb(II) on nanocomposites can be well described by quasi secondary dynamics equation, kinetic constant k2=3.61×10−3 g·mg−1·min−1, equilibrium adsorption capacity qe=63.297 mg·g−1. It is speculated that the adsorption mechanism of this adsorbent includes ion exchange, complex adsorption and electrostatic adsorption.

     

  • loading
  • [1]
    刘崇敏, 黄益宗, 于方明, 等. 改性沸石及添加CaCl2和MgCl2对重金属离子Pb2+吸附特性的影响[J]. 环境化学, 2013, 32(5):803-809. doi: 10.7524/j.issn.0254-6108.2013.05.012

    LIU Chongmin, HUANG Yizong, YU Fangming, et al. Effect of modified zeolite and addition of CaCl2 and MgCl2 on the adsorption characteristics of heavy metal ion Pb2+[J]. Environmental Chemistry,2013,32(5):803-809(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.05.012
    [2]
    祝宏山. 高效去除水中铅离子的吸附剂制备与性能研究[D]. 合肥: 中国科学技术大学, 2019.

    ZHU Hongshan. Study on preparation and properties of adsorbents for efficient removal of lead ions from water[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [3]
    苏欣悦, 丁欣欣, 闫良国. Fe3O4磁性纳米材料的制备及水处理应用进展[J]. 中国粉体技术, 2020, 26(6):1-10.

    SU Xinyue, DING Xinxin, YAN Liangguo. Progress in preparation and water treatment application of Fe3O4 magnetic nanomaterials[J]. China Powder Technology,2020,26(6):1-10(in Chinese).
    [4]
    郭健, 姚云, 赵小旭, 等. 粮食中重金属铅离子、镉离子的污染现状及对人体的危害[J]. 粮食科技与经济, 2018, 43(3):33-35, 85.

    GUO Jian, YAO Yun, ZHAO Xiaoxu, et al. Pollution status and harm to human body of heavy metal lead ion and cadmium ion in grain[J]. Grain Science, Technology and Economy,2018,43(3):33-35, 85(in Chinese).
    [5]
    KILIÇ H D, KIZIL H. Simultaneous analysis of Pb2+ and Cd2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry.[J]. Analytical and Bioanalytical Chemistry,2019,411(30):8113-8121. doi: 10.1007/s00216-019-02193-3
    [6]
    于婉婷. 聚间苯二胺的化学氧化合成及其除Cr(VI)的研究[D]. 长沙: 中南大学, 2013.

    YU Wanting. Chemical oxidation synthesis of poly(m-phenylenediamine) and its removal of Cr(VI)[D]. Changsha: Central South University, 2013(in Chinese).
    [7]
    姜智超, 邓景衡, 李伟. 四氧化三铁-蛭石复合材料制备及其对Pb2+的吸附性能[J]. 环境化学, 2017, 36(7):1664-1671. doi: 10.7524/j.issn.0254-6108.2017.07.2016110703

    JIANG Zhichao, DENG Jingheng, LI Wei. Preparation of ferric oxide-vermiculite composite and its adsorption properties for Pb2+[J]. Environmental Chemistry,2017,36(7):1664-1671(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016110703
    [8]
    XU P, ZENG G M, HUANG D L, et al. Adsorption of Pb(II) by iron oxide nanoparticales immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis[J]. Chemical Engineering Journal,2012,203:423-431. doi: 10.1016/j.cej.2012.07.048
    [9]
    IDRIS A, HASSAN N, MISRAN E, et al. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution[J]. Journal of industrial and Engineering Chemistry,2012,18(5):1582-1589. doi: 10.1016/j.jiec.2012.02.018
    [10]
    金旭. 氨基改性超顺磁纳米微粒的制备及其对污水中重金属的吸附研究[D]. 昆明: 昆明理工大学, 2018.

    JIN Xu. Preparation of amino modified superparamagnetic nanoparticles and their adsorption of heavy metals in wastewater[D]. Kunming: Kunming University of Science and Technology, 2018(in Chinese).
    [11]
    刘煌. 功能性磁性纳米颗粒制备及在重金属和致病菌分离的初步应用[D]. 杭州: 浙江工商大学, 2012.

    LIU Huang. Preparation of functional magnetic nanoparticles and its preliminary application in the separation of heavy metals and pathogenic bacteria[D]. Hangzhou: Zhejiang Industrial and Commercial University, 2012(in Chinese).
    [12]
    张恒, 郑娇, 许宁侠, 等. 磁性四氧化三铁纳米微粒的研究进展[J]. 河南科技, 2020, 39(35):134-136. doi: 10.3969/j.issn.1003-5168.2020.35.045

    ZHANG Heng, ZHENG Jiao, XU Ningxia, et al. Research progress of magnetic ferric oxide nanoparticles[J]. Henan Science and Technology,2020,39(35):134-136(in Chinese). doi: 10.3969/j.issn.1003-5168.2020.35.045
    [13]
    谭丽莎. 功能化磁性纳米复合材料的制备及其对Pb(II)和Cr(VI)的选择性去除研究[D]. 杭州: 浙江大学, 2015.

    TAN Lisha. Preparation of functionalized magnetic nanocomposites and their selective removal of Pb(II) and Cr(VI)[D]. Hangzhou: Zhejiang University, 2015(in Chinese).
    [14]
    MAHER A, SAMI Y, JEAN P, et al. Superparamagnetic Fe3O4 nanoparticles, synthesis and surface modification[J]. Materials Science in Semiconductor Processing,2015,39:641-648. doi: 10.1016/j.mssp.2015.05.035
    [15]
    FAN L L, LUO C N, SUN M, et al. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites[J]. Colloids and Surfaces B: Biointerfaces,2013,103:523-529. doi: 10.1016/j.colsurfb.2012.11.006
    [16]
    SABARIAH K, ZAINATUL A A R, MASITA M, et al. Acrylic acid-grafted polyaniline fibers for nickel ion removal from water: Synthesis, characterization and adsorption kinetics[J]. Polymer Bulletin,2022,79:1699-1711. doi: 10.1007/s00289-021-03585-1
    [17]
    赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3):1091-1098. doi: 10.3969/j.issn.0438-1157.2013.03.043

    ZHAO Deming, LI Min, XU Xinhua. Reductive dechlorination of 4-chlorophenol by highly dispersed nanometer Pd/Fe[J]. Journal of Chemical Engineering,2013,64(3):1091-1098(in Chinese). doi: 10.3969/j.issn.0438-1157.2013.03.043
    [18]
    FIGUEIRA P, LOPES C B, DANIEL A L, et al. Removal of mercury(II) by dithiocarbamate surface functionalized magnetite particles: Application to synthetic and natural spiked waters[J]. Water Research,2011,45(17):5773-5784. doi: 10.1016/j.watres.2011.08.057
    [19]
    ZHANG W B, DENG M, SUN C X, et al. Ultrasound-enhanced adsorption of chromium(VI) on Fe3O4 magnetic particles[J]. Industrial and Engineering Chemistry Research,2014,53(1):333-339. doi: 10.1021/ie401497k
    [20]
    ZHANG J, ZHAI S, LI S, et al. Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel proce[J]. Chemical Engineering Journal,2013,215-216:461-471. doi: 10.1016/j.cej.2012.11.043
    [21]
    YU W T, CHAI L Y, ZHANG L Y, et al. Synthesis of poly(m-phenylenediamine) with improved properties and superior prospect for Cr(VI) removal[J]. Transactions of Nonferrous Metals Society of China,2013,23(11):3490-3498. doi: 0.1016/S1003-6326(13)62893-9
    [22]
    HUANG M R, LU H J, LI X G. Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate[J]. Journal of Materials Chemitry,2012,22(34):17685-17699. doi: 10.1039/c2jm32361c
    [23]
    CRUZLOPES L P, MACENA M, ESTEVES B, et al. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials[J]. Open Agriculture,2021,6(1):115-123. doi: 10.1515/opag-2021-0225
    [24]
    LI Y C, JIN Z H, LI T L, et al. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr(VI) reduction[J]. Science of the Total Environment,2012,421-422:260-266. doi: 10.1016/j.scitotenv.2012.01.010
    [25]
    LIU C K, BAI R B, LY Q S. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms[J]. Water Research,2008,42(6-7):1511-1522. doi: 10.1016/j.watres.2007.10.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (515) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return