Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
DENG Linhui, YIN Dexian, XIANG Wankun, et al. Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5892-5900. doi: 10.13801/j.cnki.fhclxb.20220105.001
Citation: DENG Linhui, YIN Dexian, XIANG Wankun, et al. Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5892-5900. doi: 10.13801/j.cnki.fhclxb.20220105.001

Co-vulcanization of eucommia ulmoides gum-styrene butadiene rubber composite system and its dynamic and static mechanical properties

doi: 10.13801/j.cnki.fhclxb.20220105.001
  • Received Date: 2021-11-02
  • Accepted Date: 2021-12-19
  • Rev Recd Date: 2021-12-14
  • Available Online: 2022-01-05
  • Publish Date: 2022-12-01
  • Eucommia ulmoides gum (EUG) was blended with styrene butadiene rubber (SBR) to prepare EUG-SBR composites. The co-vulcanization was characterized by stripping experiments and tensile experiments, and the effect of EUG content on the dynamic properties of the composites was studied via tensile experiment, SEM, DMA and XRD. The results display that the prepared sulfide formula (mass ratio of accelerant N, N-dicyclohexyl-2-benzothiazole sulfonamide (DZ) 1.0% (based on the mass of EUG- SBR), accelerant tetramethylthiuram disulfide (TMTD) 0.1%, sulfur 1.5%) could achieve better co-vulcanization of the two rubbers. The stripping strength of the two rubbers reaches 4.2 kN/m and the tensile strength (mass ratio of SBR∶EUG=70∶30) could reach 6.3 MPa. The EUG phase in the composites mainly exists in β-crystalline form, and with the EUG content increasing, the crystallinity and melt temperature of the composites are significantly improved. The introduction of EUG decreases the peak loss factor tanδmax value and increases the storage modulus of the composites. At temperatures of 10 ℃, the storage modulus of EUG-SBR composites increases from 3.0×106 Pa (with 5% mass of EUG) to 1.7×107 Pa (with EUG of 35%). At the same time, the presence of crystal zone plays a role of physical crosslinking points to improve the tensile strength and fixed elongation stress of composites.

     

  • loading
  • [1]
    张聪, 胡昌飞, 林新志. SSBR分子结构对硫化胶阻尼性能的影响[J]. 材料开发与应用, 2019, 34(2):63-69.

    ZHANG Cong, HU Changfei, LIN Xinzhi. Effect of molecular structure on damping properties of solution-polymerized styrene-butadiene vulcanized rubber[J]. Development and Application of Materials,2019,34(2):63-69(in Chinese).
    [2]
    FU Y F, KABIR I, YEOH G H, et al. A review on polymer-based materials for underwater sound absorption[J]. Polymer Testing,2021,96:107115. doi: 10.1016/j.polymertesting.2021.107115
    [3]
    耿晓燕, 郭大通, 赵德涛, 等. 滑动接枝共聚物/丁腈橡胶复合材料及其阻尼性能[J]. 复合材料学报, 2016, 33(7):1454-1460.

    GENG Xiaoyan, GUO Datong, ZHAO Detao, et al. Sliding graft copolymer/nitrile butadiene rubber composites and its damping property[J]. Acta Materiae Compositae Sinica,2016,33(7):1454-1460(in Chinese).
    [4]
    向平, 李豪祥, 宋昊, 等. 压力与温度对炭黑填充丁苯橡胶复合材料动静态性质影响的分子模拟[J]. 高分子材料科学与工程, 2021, 37(3):93-99, 105.

    XIANG Ping, LI Haoxiang, SONG Hao, et al. Molecular simulation of the influence of pressure and temperature on the dynamic and static properties of carbon black filled styrene butadiene rubber composites[J]. Polymer Materials Science & Engineering,2021,37(3):93-99, 105(in Chinese).
    [5]
    王兵, 任伟伟, 王雯霏. 静压力下粘弹性阻尼材料自由体积分数的分子模拟研究[J]. 材料开发与应用, 2016, 31(6):1-5.

    WANG Bing, REN Weiwei, WANG Wenfei. Molecular simulation analysis for the influence of hydrostatic pressure on the free volume fraction of viscoelastic damping materials[J]. Development and Application of Materials,2016,31(6):1-5(in Chinese).
    [6]
    浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011, 27(12):86-89.

    PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering,2011,27(12):86-89(in Chinese).
    [7]
    WEI X N, PENG P, PENG F, et al. Natural polymer eucommia ulmoides rubber: A novel material[J]. Journal of Agricultural and Food Chemistry,2021,69(13):3797-3821. doi: 10.1021/acs.jafc.0c07560
    [8]
    董宇航, 赵喜源, 曹仁伟, 等. 天然杜仲胶的提取技术和应用研究现状[J]. 弹性体, 2020, 30(1):68-74. doi: 10.3969/j.issn.1005-3174.2020.01.015

    DONG Yuhang, ZHAO Xiyuan, CAO Renwei, et al. Research status of extraction technology and application of eucommia ulmoides gum[J]. China Elastomerics,2020,30(1):68-74(in Chinese). doi: 10.3969/j.issn.1005-3174.2020.01.015
    [9]
    HE X R, WANG J H, LI M X, et al. Eucommia ulmoides Oliv: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine[J]. Journal of Ethnopharmacology,2014,152(1):14-32. doi: 10.1016/j.jep.2013.12.052
    [10]
    李春霞, 辛振祥, 夏琳. 天然杜仲橡胶在橡塑方面的研究进展[J]. 特种橡胶制品, 2014, 35(1):78-80.

    LI Chunxia, XIN Zhenxiang, XIA Lin. Research progress of natural eucommia rubber in rubber and plastics[J]. Special Purpose Rubber Products,2014,35(1):78-80(in Chinese).
    [11]
    张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料—杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117.

    ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material-recent studies on eucommia ulmoides fum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese).
    [12]
    DONG M J, ZHANG T X, ZHANG J C, et al. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires[J]. Polymer Testing,2020,87(8):106539.
    [13]
    CAO R W, DENG L H, FENG Z B, et al. Preparation of natural bio-based Eucommia ulmoides gum/styrene-butadiene rubber composites and the evaluation of their damping and sound absorption properties[J]. Polymer,2021,213:123292. doi: 10.1016/j.polymer.2020.123292
    [14]
    GEORGE S C, NINAN K N, GROENINCKX G, et al. Styrene-butadiene rubber/natural rubber blends: Morphology, transport behavior, and dynamic mechanical and mecha-nical properties[J]. Journal of Applied Polymer Science,2015,78(6):1280-1303.
    [15]
    郭建华, 曾幸荣, 罗权焜. 橡胶阻尼减震材料的研究进展[J]. 特种橡胶制品, 2012, 33(6):68-73.

    GUO Jianhua, ZENG Xingrong, LUO Quankun. Research progress of rubber damping materials[J]. Special Purpose Rubber Products,2012,33(6):68-73(in Chinese).
    [16]
    LI Y, XU F, LIN Z S, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale,2017,9:14476-14485. doi: 10.1039/C7NR05189A
    [17]
    ZHANG J C, XUE Z H, YAN R F. Damping performance of eucommia ulmoides gum[J]. Chinese Journal of Polymer Science,2011,29(2):157-163. doi: 10.1007/s10118-010-1008-4
    [18]
    罗权焜, 郭建华. 共混橡胶的共硫化研究[J]. 特种橡胶制品, 2011, 32(5):1-7. doi: 10.3969/j.issn.1005-4030.2011.05.001

    LUO Quankun, GUO Jianhua. Study on co-vulcanization of blend rubber[J]. Special Purpose Rubber Products,2011,32(5):1-7(in Chinese). doi: 10.3969/j.issn.1005-4030.2011.05.001
    [19]
    中国国家标准化管理委员会. 胶粘剂T剥离强度试验方法 挠性材料对挠性材料: GB/T 2791—1995[S]. 北京: 中国标准出版社, 1995.

    Standardization Administration of the People's Republic of China. Adhesive T peel strength test method Flexible material with flexible material: GB/T 2791—1995[S]. Beijing: China Standards Press, 1995(in chinese).
    [20]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in chinese).
    [21]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Vulcanized rubber or thermoplastic rubber indentation hardness test method Part 1: GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in chinese).
    [22]
    王振华. 橡胶纳米增强机理及新型增强导热复合材料的制备、结构与性能研究[D]. 北京: 北京化工大学, 2010.

    WANG Zhenhua. Nano-reinforcement mechanism of rubber and preparation, structure and performance of new reinforced thermally conductive composite materials[D]. Beijing: Beijing University of Chemical Technology, 2010(in chinese).
    [23]
    YAO K C, NIE H R, LIANG Y R, et al. Polymorphic crystallization behaviors in cis-1, 4-polyisoprene/trans-1, 4-polyisoprene blends[J]. Polymer,2015,80:259-264. doi: 10.1016/j.polymer.2015.10.063
    [24]
    RATRI P, TASHIRO K, IGUCHI M. Experimentally-and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1, 4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information[J]. Polymer,2012,53(16):3548-3558. doi: 10.1016/j.polymer.2012.06.003
    [25]
    ZHANG J C, XUE Z H. A comparative study on the properties of Eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010
    [26]
    WU Y F, YAO K C, NIE H R, et al. Confirmation on the compatibility between cis-1, 4-polyisoprene and trans-1, 4-polyisoprene[J]. Polymer,2018,153:271-276. doi: 10.1016/j.polymer.2018.08.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (785) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return