Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
YU Muhuo, SHI Han, YU Xuduo, et al. Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003
Citation: YU Muhuo, SHI Han, YU Xuduo, et al. Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003

Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding

doi: 10.13801/j.cnki.fhclxb.20211228.003
  • Received Date: 2021-10-28
  • Accepted Date: 2021-12-16
  • Rev Recd Date: 2021-12-15
  • Available Online: 2021-12-30
  • Publish Date: 2022-12-01
  • Based on the theory of non-geodesic winding and fiber slippage, it was proposed to use non-geodesic winding to form integrated composite drive shafts. Multiple groups of variable-angle composite drive shafts with different proportions of transition zone were designed, and the torsion performance and failure mechanism of the drive shafts were deeply studied by finite element analysis and torsional experiment. The results show that the greater the proportion of the transition zone with variable angles, the better the torsional performance of the drive shafts. The transition zone increases from 20% to 80%, the failure load of the drive shafts increases by 111%, and the peak load increases by 90.7%. With the increase in the proportion of the transition zone, the damage failure caused by buckling deformation is effectively alleviated, and the damage angle is reduced by 54.5%. According to the finite element simulation and torsional experiment analysis, it can be concluded that the increase of the fiber angle in the transition zone suppresses the buckling deformation and reduces mechanical conduction failure on the interface caused by delamination damage. As a result, it improves the bearing capacity of the drive shafts.

     

  • loading
  • [1]
    QI L, LI C, YU X, et al. Effect of reinforced fibers on the vibration characteristics of fibers reinforced composite shaft tubes with metal flanges[J]. Composite Structures,2021,275:114460. doi: 10.1016/j.compstruct.2021.114460
    [2]
    SUN Z, XIAO J, YU X, et al. Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology[J]. Composite Structures,2020,241:111725. doi: 10.1016/j.compstruct.2019.111725
    [3]
    ZU L, KOUSSIOS S, BEUKERS A. A novel design solution for improving the performance of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy,2012,37(19):14343-14350. doi: 10.1016/j.ijhydene.2012.07.009
    [4]
    矫维成, 王荣国, 刘文博, 等. 缠绕纤维与芯模表面间滑线系数的测量表征[J]. 复合材料学报, 2012, 29(3):191-196.

    JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al. Measurement of slippage coefficient between fiber and mandrel surface for non-geodesic filament winding[J]. Acta Materiae Compositae Sinica,2012,29(3):191-196(in Chinese).
    [5]
    ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures,2019,207:41-52. doi: 10.1016/j.compstruct.2018.09.007
    [6]
    DALIBOR I H, LISBÔA T V, MARCZAK R J, et al. A geometric approach for filament winding pattern generation and study of the influence of the slippage coefficient[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(12):576. doi: 10.1007/s40430-019-2083-2
    [7]
    FU J, YUN J, JUNG Y, et al. Generation of filament-winding paths for complex axisymmetric shapes based on the principal stress field[J]. Composite Structures,2017,161:330-339. doi: 10.1016/j.compstruct.2016.11.022
    [8]
    ZHANG B, XU H, ZU L, et al. Design of filament-wound composite elbows based on non-geodesic trajectories[J]. Composite Structures,2018,189:635-640. doi: 10.1016/j.compstruct.2018.02.008
    [9]
    PARK H C, CHO C, CHOI Y. Torsional buckling analysis of composite cylinders[J]. AIAA Journal,2001,39(5):951-955. doi: 10.2514/2.1400
    [10]
    SHOKRIEH M M, HASANI A, LESSARD L B. Shear buckling of a composite drive shaft under torsion[J]. Composite Structures,2004,64(1):63-69. doi: 10.1016/S0263-8223(03)00214-9
    [11]
    SHEN H S, XIANG Y. Buckling and postbuckling of anisotropic laminated cylindrical shells under combined axial compression and torsion[J]. Composite Structures,2008,84(4):375-386. doi: 10.1016/j.compstruct.2007.10.002
    [12]
    闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3):781-787.

    YAN Guang, HAN Xiaojin, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica,2014,31(3):781-787(in Chinese).
    [13]
    胡晶, 李晓星, 张天敏, 等. 碳纤维复合材料传动轴承扭性能优化设计[J]. 复合材料学报, 2009, 26(6):177-181. doi: 10.3321/j.issn:1000-3851.2009.06.030

    HU Jing, LI Xiaoxing, ZHANG Tianmin, et al. Design optimization on torsion prosion property of carbon-fiber composite drive shaft[J]. Acta Materiae Compositae Sinica,2009,26(6):177-181(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.030
    [14]
    MINAK G, ABRATE S, GHELLI D, et al. Residual torsional strength after impact of CFRP tubes[J]. Composites Part B: Engineering,2010,41(8):637-645. doi: 10.1016/j.compositesb.2010.09.021
    [15]
    BADIE M A, MAHDI E, HAMOUDA A M S. An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft[J]. Materials & Design,2011,32(3):1485-1500.
    [16]
    SEVKAT E, TUMER H, HALIDUN KELESTEMUR M, et al. Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts[J]. Materials & Design,2014,60:310-319. doi: 10.1016/j.matdes.2014.03.069
    [17]
    TARIQ M, NISAR S, SHAH A, et al. Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(4):198-206. doi: 10.1007/s40430-018-1099-3
    [18]
    HAO W, HUANG Z, ZHANG L, et al. Study on the torsion behavior of 3-D braided composite shafts[J]. Composite Structures,2019,229:111384. doi: 10.1016/j.compstruct.2019.111384
    [19]
    ARMANFARD A, MELENKA G W. Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension-torsion loading[J]. Composite Structures,2021,269:114049. doi: 10.1016/j.compstruct.2021.114049
    [20]
    MAHDY W M, ZHAO L, LIU F, et al. Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads[J]. Composite Structures,2021,255:112977. doi: 10.1016/j.compstruct.2020.112977
    [21]
    高洪平, 孙泽玉, 陶雷, 等. 复合材料模量对汽车传动轴固有频率的影响[J]. 复合材料科学与工程, 2018(5):58-63.

    GAO Hongping, SUN Zeyu, TAO Lei, et al. Effect of fiber modulus on natural frequency of composite automobile drive shaft[J]. Composites Science and Engineering,2018(5):58-63(in Chinese).
    [22]
    孙泽玉, 余许多, 陶雷, 等. 不同内径碳纤维复合材料轴管的振动性能研究[J]. 复合材料科学与工程, 2020(5):63-68. doi: 10.3969/j.issn.1003-0999.2020.05.009

    SUN Zeyu, YU Xuduo, TAO Lei, et al. Study on vibration properties of carbon fiber reinforced composite tubes with different inner diameters[J]. Composite Science and Engineering,2020(5):63-68(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.05.009
    [23]
    YE J, CHU C, CAI H, et al. A multi-scale model for studying failure mechanisms of composite wind turbine blades[J]. Composite Structures,2019,212:220-229. doi: 10.1016/j.compstruct.2019.01.031
    [24]
    CHRISTENSEN R M. Tensor transformations and failure criteria for the analysis of fiber composite materials[J]. Journal of Composite Materials, 1988, 22(9): 874-897.
    [25]
    CHRISTENSEN R M. Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results[J]. Composites Science and Technology, 2019, 182: 107718.
    [26]
    GU J, CHEN P. Some modifications of Hashin’s failure criteria for unidirectional composite materials [J]. Composite Structures, 2017, 182: 143-152.
    [27]
    MACEDO R, FERREIRA R, GUEDES J M, et al. Intraply failure criterion for unidirectional fiber reinforced compo-sites by means of asymptotic homogenization[J]. Compo-site Structures, 2017, 159: 335-349.
    [28]
    MURTY A V K, NAIK G N, GOPALAKRISHNAN S. Towards a rational failure criterion for unidirectional composite laminae[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 147-157.
    [29]
    ZHAO H W, LIU X G, KENT A. Mechanical properties research of carbon fiber composite laminates [J]. Materials Science Forum, 2020, 980: 107-116.
    [30]
    宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11): 3586-3600.

    SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3586-3600(in Chinese).
    [31]
    孙伟, 关志东, 黎增山, 等 纤维增强复合材料薄壁圆管扭转失效分析[J]. 复合材料学报, 2016, 33(10): 2187-2196.

    SUN Wei, GUANG Zhidong, LI Zengshan, et al. Failure analysis of fiber reinforced composite thin walled tubes under torsion load [J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2187-2196(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(3)

    Article Metrics

    Article views (1271) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return