Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Caixia, LU Baisheng, LI Shuai, et al. Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5835-5845. doi: 10.13801/j.cnki.fhclxb.20211223.003
Citation: LIU Caixia, LU Baisheng, LI Shuai, et al. Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5835-5845. doi: 10.13801/j.cnki.fhclxb.20211223.003

Sandwich flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotube conductive material

doi: 10.13801/j.cnki.fhclxb.20211223.003
  • Received Date: 2021-10-29
  • Accepted Date: 2021-12-13
  • Rev Recd Date: 2021-12-04
  • Available Online: 2021-12-24
  • Publish Date: 2022-12-01
  • Since flexible strain sensors require high sensitivity and a wide strain range in healthcare, soft robotics and human-computer interaction, this work designed a flexible strain sensor based on silver nanoparticles-polydopamine-carbon nanotubes (AgNPs-PDA-CNT) sensitive material system, and prepared a layer coated sandwich structure flexible strain sensor. The results of material characterization and property test showed that AgNPs were uniformly dispersed and fixed on the surface of PDA-CNT by virtue of PDA adhesion and reducibility. The AgNPs-PDA-CNT conductive material is closely bonded to the inner wall of silicone rubber capillary tube and polydimethylsiloxane (PDMS). AgNPs-PDA-CNT penetrates into PDMS and the concentration is in gradient distribution. The sensor has high sensitivity coefficient (GF) and wide strain range (69.04 when 0%-44%, 253.13 when 44%-66%, 1253.8 when 66%-76%), fast response (75 ms) and recovery (90 ms), good stability and repeatability. The sensor is applied to human motion monitoring, soft finger ontology sensing and soft grasping behavior monitoring, and good application results are achieved.

     

  • loading
  • [1]
    张阳阳, 黄英, 刘月, 等. 基于多传感器信息融合的人类抓握特征学习及物体识别[J]. 机器人, 2020, 42(3):267-276.

    ZHANG Yangyang, HUANG Ying, LIU Yue, et al. Human grasp feature learning and object recognition based on multi-sensor information fusion[J]. Robot,2020,42(3):267-276(in Chinese).
    [2]
    SONG Z Q, LI W Y, BAO Y, et al. Breathable and skin-mountable strain sensor with tunable stretchability, sensitivity, and linearity via surface strain delocalization for versatile skin activities’ recognition[J]. ACS Applied Materials & Interfaces,2018,10:42826-42836.
    [3]
    向东, 张学忠, 陈小雨, 等. 基于双向拉伸制备还原氧化石墨烯-碳纳米管复合薄膜的高性能柔性压阻传感器[J]. 复合材料学报, 2022, 39(3):1120-1130.

    XIANG Dong, ZHANG Xuezhong, CHEN Xiaoyu, et al. High performance flexible piezoresistive strain sensor based on biaxially stretched conductive polymer composite films with reduced graphene oxide-carbon nanotubes[J]. Acta Materiae Compositae Sinica,2022,39(3):1120-1130(in Chinese).
    [4]
    李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7):2152-2161.

    LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/ polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica,2021,38(7):2152-2161(in Chinese).
    [5]
    CHEN Y, WANG L, WU Z F, et al. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors[J]. Composites Part B: Engineering,2019,176:107358. doi: 10.1016/j.compositesb.2019.107358
    [6]
    GUO D J, PAN X D, XIE Y, et al. Effects of service condition on the performance of conductive polymer composites for flexible strain sensors[J]. Sensors and Actuators A: Physi-cal,2020,318(9):112494.
    [7]
    潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10):1592-1607.

    PAN Chaoying, MA Jianzhong, ZHANG Wenbo, et al. Flexible conductive polymer composites in strain sensors[J]. Progress in Chemistry,2020,32(10):1592-1607(in Chinese).
    [8]
    SUN H L, DAI K, ZHAI W, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces,2019,11(39):36052-36062.
    [9]
    ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces,2019,11(26):23649-23658.
    [10]
    张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/ polydimethylsiloxane flexible strain sensor[J]. Acta Mate-riae Compositae Sinica,2020,37(5):1024-1032(in Chinese).
    [11]
    ZOU Q S, HE K, OU-YANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Mate-rials& Interfaces,2021,13(12):14479-14488.
    [12]
    WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nano-tube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces,2018,10(8):7371-7380.
    [13]
    张啸梅, 杨凯, 焦明立, 等. 纺织材料基可穿 戴柔性应力/应变传感器的发展及应用[J]. 上 海纺织科技, 2020, 48(8):17-21.

    ZHANG Xiaomei, YANG Kai, JIAO Mingli, et al. Development and application of fiber-based wearable flexible stress/strain sensors[J]. Shanghai Textile Science & Technology,2020,48(8):17-21(in Chinese).
    [14]
    AMJADI M, KYUNG K, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755
    [15]
    LEE H A, MA Y, ZHOU F, et al. Material-independent surface chemistry beyond polydopamine coating[J]. Accounts of Chemical Research,2019,52(3):704-713. doi: 10.1021/acs.accounts.8b00583
    [16]
    RYU J H, MESSERSMITH P B, LEE H. Polydopamine surface chemistry: A decade of discovery[J]. ACS Applied Materials& Interfaces,2018,10(9):7523-7540.
    [17]
    CHOI G H, RHEE D K, PARK A R. Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes[J]. ACS Applied Materials & Interfaces,2016,8(5):3250-3257.
    [18]
    ZHANG Y Y, HUANG Y, LIU P, et al. Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mod cooperative conductive network for gait detection[J]. Composites Science and Technology,2020,191:108070. doi: 10.1016/j.compscitech.2020.108070
    [19]
    QI P D, LI N, QU C B, et al. Understanding the cycling performance degradation mechanism of a graphene-based strain sensor and an effective corresponding improvement solution[J]. ACS Applied Materials & Interfaces,2020,12(20):23272-23283.
    [20]
    WU X X, NIU F F, ZHONG A, et al. Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics[J]. RSC Advances,2019,9:39958-39964. doi: 10.1039/C9RA08118F
    [21]
    ZHANG R, LI S Q, YING C, et al. Bioinspired design of flexible strain sensor with high performance based on gradient filler distributions[J]. Composites Science and Technology,2020,200(45):108319.
    [22]
    ZHANG R, YING C, GAO H, et al. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification[J]. Composites Science and Technology,2019,171:218-225.
    [23]
    BOLAND C S, KHAN U, BACKES C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites[J]. ACS Nano,2014,8(9):8819-8830. doi: 10.1021/nn503454h
    [24]
    葛怡, 于晓灵, 张艳丹, 等. 全氟辛基季胺碘化物改性碳纳米管对天然橡胶胶乳性能的影响[J]. 复合材料学报, 2017, 34(12):2841-2845.

    GE Yi, YU Xiaoling, ZHANG Yandan, et al. Effect of trimethyl-1-propanaminium iodide modified carbon nano-tube on properties of natural rubber latex[J]. Acta Materiae Compositae Sinica,2017,34(12):2841-2845(in Chinese).
    [25]
    PHAN H T, HAES A J. What does nanoparticle stability mean[J]. The Journal of Physical Chemistry,2019,123(27):16495-16507.
    [26]
    PEI Z, LIU Y, ZHANG Q, et al. Highly sensitive, stretchable strain sensor based on Ag@COOH-functionalized CNTs for stroke and pronunciation recognition[J]. Advanced Electronic Materials,2019,5(7):1900227. doi: 10.1002/aelm.201900227
    [27]
    LI W J, LI Y, SHENG M, et al. Enhanced adhesion of carbon nanotubes by dopamine[J]. Langmuir,2019,35(13):4527-4533. doi: 10.1021/acs.langmuir.9b00192
    [28]
    汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2020, 42(5):168-177.

    TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research,2020,42(5):168-177(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1110) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return