Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WU Bi, QIN Lirong, ZHAO Jianwei, et al. Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5727-5735. doi: 10.13801/j.cnki.fhclxb.20211221.003
Citation: WU Bi, QIN Lirong, ZHAO Jianwei, et al. Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5727-5735. doi: 10.13801/j.cnki.fhclxb.20211221.003

Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance

doi: 10.13801/j.cnki.fhclxb.20211221.003
  • Received Date: 2021-10-22
  • Accepted Date: 2021-12-08
  • Rev Recd Date: 2021-11-29
  • Available Online: 2021-12-22
  • Publish Date: 2022-12-01
  • Supercapacitor, which has a series of advantages such as fast charge and discharge, high specific capacitance as well as good cycle stability, has become an important energy storage device, whose performance mainly depends on the electrochemical properties of electrode materials. Composite nanomaterials with high specific surface area and environmental friendliness are ideal electrode materials for supercapacitors. In this paper, nickel-molybdenum nanosheets were grown on the surface of cobalt hydroxide nanowires on the carbon cloth substrate by a two-step hydrothermal method to achieve CoO@NiMo-O(P) composite nanomaterials after low temperature annealing and phosphorlation. The morphology, structure and chemical valence of the samples were characterized and analyzed by SEM, TEM and XPS. The results of electrochemical tests show that the hierarchical CoO@NiMo-O(P) composites has good capacitance performance. The specific capacitance reaches 1304.55 F/g at a low current density of 1 A/g, and a capacity retention of 87% is exhibited after 1000 charge and discharge at a current density of 10 A/g, showing good cycle stability.

     

  • loading
  • [1]
    苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4):1628-1637.

    SU X H, XIE Q X, HE Q Q, et al. Building a high-perfor-mance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese).
    [2]
    韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2022, 39(1):193-202.

    WEI H G, LI G X, WAN T, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2022,39(1):193-202(in Chinese).
    [3]
    胡彬, 张红平, 姜丽丽. 碳化氧化石墨烯/壳聚糖超级电容器电极复合材料的制备及表征[J]. 复合材料学报, 2018, 35(3):661-667.

    HU B, ZHANG H P, JIANG L L. Preparation of carbonized graphene oxide/chitosan composites and their application as electrode composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(3):661-667(in Chinese).
    [4]
    董永光, 李生娟, 罗意, 等. 高性能NiCoP基超级电容器电化学性能[J]. 无机化学学报, 2021, 37(6): 1062-1070.

    DONG Y G, LI S J, LUO Y, et al. Electrochemical perfor-mance of nicop-based supercapacitor[J]. Chinese Journal of Ingorganic Chemistry, 2021, 37(6): 1062-1070(in Chinese).
    [5]
    YAO P Y, LI Z, ZHU J C, et al. Controllable synthesis of NiCo-LDH/Co(OH)2@PPY composite via electrodeposition at high deposition voltages for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2021,875:160042. doi: 10.1016/j.jallcom.2021.160042
    [6]
    ACHARYA J W, PARK M, KIM B J, et al. Leaf-like integrated hierarchical NiCo2O4 nanosheets electrodes for high-rate asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,884:161165. doi: 10.1016/j.jallcom.2021.161165
    [7]
    ZHOU Q F, GONG Y, TAO K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: 134582
    [8]
    HE S X, GUO F J, YANG Q, et al. Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J]. Small,2021,17(21):2100353.
    [9]
    LI Z, MA K J, GUO F J, et al. Construction of homologous Ni2P/NiCoP heterostructure for enhanced pseudocapaci-tive properties[J]. Materials Letters,2021,288:129319. doi: 10.1016/j.matlet.2021.129319
    [10]
    XU F, XIA Q, DU G P, et al. Coral-like Ni2P@C derived from metal-organic frameworks with superior electrochemical performance for hybrid supercapacitors[J]. Electrochimica Acta,2021,380:138200.
    [11]
    WANG F M, CHEN J W, QI X P, et al. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Applied Surface Science,2019,481:1403-1411.
    [12]
    YANG Y Y, ZHOU Y, HU Z A, et al. 3D thin-wall cell structure nickel-cobalt-molybdenum ternary phosphides on carbon cloth as high-performance electrodes for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2019,772:683-692. doi: 10.1016/j.jallcom.2018.09.134
    [13]
    XU Z Y, DU C C, YANG H K, et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chemical Engineering Journal,2020,421(12):127871.
    [14]
    LIU Y, MA Z L, XIN N, et al. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo2O4/NiMoO4 for efficient energy storage[J]. Journal of Colloid and Interface Science,2021,601:793-802. doi: 10.1016/j.jcis.2021.05.095
    [15]
    HAN R X, GUAN L X, ZHANG S, et al. Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization[J]. Electrochimica Acta,2020,368:137690.
    [16]
    XIANG F F, ZHOU X Y, YUE X Q, et al. An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor[J]. Electrochimica Acta,2021,379:138178. doi: 10.1016/j.electacta.2021.138178
    [17]
    ZHU Z N, TIAN W, LV X B, et al. P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion[J]. Journal of Colloid and Interface Science,2020,587:855-863.
    [18]
    LIU J N, DENG X Y, ZHU S, et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor[J]. Electrochimica Acta,2020,368:4686.
    [19]
    YUAN Z, WANG H Y, SHEN J L, et al. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Materials Chemistry A,2020,8(43):22163-22174.
    [20]
    LV X, HUANG W X, SHI Q W, et al. Synthesis of amorphous NiCozVxOy nanosphere as a positive electrode materials via a facile route for asymmetric supercapacitors[J]. Journal of Power Sources,2021,492:229623. doi: 10.1016/j.jpowsour.2021.229623
    [21]
    HUANG C H, HU Y Z, JIANG S P, et al. Amorphous nickel-based hydroxides with different cation substitutions for advanced hybrid supercapacitors[J]. Electrochimica Acta,2019,325:134936. doi: 10.1016/j.electacta.2019.134936
    [22]
    LIU C L, ZHANG G, YU L, et al. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small,2018,14(22):1800421. doi: 10.1002/smll.201800421
    [23]
    LEI X Y, GE S C, YANG T Y, et al. Ni-Mo-S@Ni-P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance[J]. Jour-nal of Power Sources, 2020, 477: 229022.
    [24]
    LU Y, YU H, CHEN C, et al. Sulfide@hydroxide core-shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation[J]. Journal of Energy Chemistry,2020,58:431-440.
    [25]
    HU Z Y, MIAO Y D, XUE X L, et al. CuO@NiCoFe-S core-shell nanorod arrays based on Cu foam for high perfor-mance energy storage[J]. Journal of Colloid and Interface Science,2021,599:34-45. doi: 10.1016/j.jcis.2021.04.085
    [26]
    LI J X, ZHAO J W, QIN L R, et al. Hierarchical Co(OH)2@NiMoS4 nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors[J]. RSC Advances,2020,10(38):22606-22615. doi: 10.1039/D0RA03253K
    [27]
    MIAO C X, ZHOU C L, WANG H E, et al. Hollow Co-Mo-Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2021,490:229532. doi: 10.1016/j.jpowsour.2021.229532
    [28]
    LEI N, MA P P, YU B, et al. Anion-intercalated supercapacitor electrode based on perovskite-type SrB0.875Nb0.125O3(B=Mn, Co)[J]. Chemical Engineering Journal,2020,421:127790.
    [29]
    MIAO W K, HAN Q H, ZHANG H M, et al. Uniform phosphorus doped CoWO4@NiWO4 nanocomposites for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,877:160301. doi: 10.1016/j.jallcom.2021.160301
    [30]
    FANG X T, WU P C, FU J W. Facile construction of N, P and O ternary self-doped hollow carbon microspheres with hierarchical porous structure for environmental applications[J]. Microporous and Mesoporous Materials,2021,321:111135. doi: 10.1016/j.micromeso.2021.111135
    [31]
    ZHENG G F, HUANG Z C, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors[J]. Journal of Power Sources,2021,482:228935. doi: 10.1016/j.jpowsour.2020.228935
    [32]
    ZHAO F, ZHENG D H, LIU Y, et al. Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors[J]. Chemical Engineering Journal,2021,415(7411):128871.
    [33]
    LI P F, ZHANG M, YIN H F, et al. Hierarchical mesoporous NiCoP hollow nanocubes as efficient and stable electrodes for high-performance hybrid supercapacitor[J]. Applied Surface Science,2021,536:147751. doi: 10.1016/j.apsusc.2020.147751
    [34]
    BAASANJAV E, BANDYOPADHYAY P, SAEED G, et al. Dual-ligand modulation approach for improving supercapaci-tive performance of hierarchical zinc-nickel-iron phosphide nanosheet-based electrode[J]. Journal of Industrial and Engineering Chemistry,2021,99:299-308. doi: 10.1016/j.jiec.2021.04.034
    [35]
    WAN L, WANG Y M, ZHANG Y, et al. Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors[J]. Journal of Power Sources,2021,506:230096. doi: 10.1016/j.jpowsour.2021.230096
    [36]
    LIU Z Q, LIU Y, ZHONG Y X, et al. Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors[J]. Journal of Power Sources,2020,484:229288.
    [37]
    WANG X W, LI W X, WANG X E, et al. Electrochemical pro-perties of NiCoO2 synthesized by hydrothermal method[J]. RSC Advances,2017,7:50420-50424. doi: 10.1039/C7RA09288A
    [38]
    WANG Y, CHEN L J, LIN S M, et al. Bimetallic Ni0.4Mn1.6P derived from nickel functionalized a new Mn metal-orga-nic framework for supercapacitor[J]. Materials Today Communications,2021,26:102057.
    [39]
    汪明, 蔡园园, 杨艺, 等. Ni2P@CoP3核壳纳米球的制备、表征及其用于超级电容器性能[J]. 无机化学学报, 2021, 37(9):1633-1641.

    WANG M, CAI Y Y, YANG Y, et al. Synthesis and characterization of Ni2P@CoP3 core-shell nanospheres for supercapacitors[J]. Chinese Journal of Ingorganic Chemistry,2021,37(9):1633-1641(in Chinese).
    [40]
    GU J L, SUN L, ZHANG Y X, et al. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Chemical Engineering Journal,2019,385:123454.
    [41]
    ZHANG X J, HOU S J, DING Z B, et al. Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor[J]. Journal of Alloys and Compounds,2019,822(13):153578.
    [42]
    ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-perfor-mance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Advanced Functional Materials,2015,25(48):7530-7538. doi: 10.1002/adfm.201503662
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1080) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return