Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
YIN Yuhang, ZHAO Gai, SONG Jingfu, et al. High temperature tribological properties of polyimide composites modified by multi-components[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001
Citation: YIN Yuhang, ZHAO Gai, SONG Jingfu, et al. High temperature tribological properties of polyimide composites modified by multi-components[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5699-5710. doi: 10.13801/j.cnki.fhclxb.20211221.001

High temperature tribological properties of polyimide composites modified by multi-components

doi: 10.13801/j.cnki.fhclxb.20211221.001
  • Received Date: 2021-11-03
  • Accepted Date: 2021-12-11
  • Rev Recd Date: 2021-12-01
  • Available Online: 2021-12-22
  • Publish Date: 2022-12-01
  • The thermal and tribological properties at high temperature of polyimide (PI) composites were improved by enhancing the heat resistance and thermal conductivity. Cage polysesquiloxane (POSS) and SiO2 were selected to improve the heat resistance, carbon nanotubes (CNTs) and Cu powder were chosen to improve the thermal conductivity. Then, molecular simulation and experiment were both used to study the effect of each component on its properties. The results show that POSS and SiO2 could improve the heat resistance and Young's modulus of PI, but reduce the thermal conductivity and impact strength. Cu improves the high temperature resistance and thermal conductivity of PI, but reduces the mechanical strength. CNTs show an excellent reinforced effect at low content, but become worse at high content. Then, PI composites modified by the multi-component were designed according to the results of single-component modification. The results show that the PI composites with 3wt% POSS, 3wt% SiO2, 0.5wt% CNTs and 3wt% Cu have the best comprehensive performance and the best friction performance at high temperature. The friction coefficient at 200℃ is 0.65, which is 27.8% lower than that of pure PI. The wear rate is 5.11×10−5 mm3/(N·m), decreasing by 19.3%.

     

  • loading
  • [1]
    LI S, ZHANG N, YANG Z, et al. Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials[J]. Tribology International,2019,136:412-420. doi: 10.1016/j.triboint.2019.03.072
    [2]
    SCHWINGENSCHLÖGL P, TENNER J, MERKLEIN M. Tribological behavior of different tool steels and surface properties under hot stamping conditions[J]. Key Engineering Materials,2018,767:212-219. doi: 10.4028/www.scientific.net/KEM.767.212
    [3]
    GHIOTTI A, BRUSCHI S, SGARABOTTO F, et al. Tribological performances of Zn-based coating in direct hot stamping[J]. Tribology International,2014,78:142-151. doi: 10.1016/j.triboint.2014.05.007
    [4]
    KIM K S, HEO J C, KIM K W. Effects of thermal treatment on the tribological characteristics of thermoplastic polymer film[J]. Thin Solid Films,2011,519(18):5988-5995. doi: 10.1016/j.tsf.2011.03.122
    [5]
    SONG F, YANG Z, ZHAO G, et al. Tribological performance of filled PTFE-based friction material for ultrasonic motor under different temperature and vacuum degrees[J]. Journal of Applied Polymer Science,2017,134(39):45358. doi: 10.1002/app.45358
    [6]
    ZHAO G, WU C, ZHANG L, et al. Friction and wear behavior of PI and PTFE composites for ultrasonic motors[J]. Polymers for Advanced Technologies,2018,29(5):1487-1496. doi: 10.1002/pat.4260
    [7]
    梁瑞虹, 赵盖, 陈宁, 等. 超声电机宽温域低损耗压电与摩擦功能材料[J]. 光学精密工程, 2020, 28(4):771-781.

    LIANG Ruihong, ZHAO Gai, CHEN Ning, et al. Wide-temperature-range and low-loss piezoelectric and friction functional materials of ultrasonic motor[J]. Optics and Precision Engineering,2020,28(4):771-781(in Chinese).
    [8]
    张玉迪, 于浩, 徐新宇. 无机材料改性聚酰亚胺复合材料的研究进展[J]. 合成树脂及塑料, 2021, 38(3):71-76.

    ZHANG Yudi, YU Hao, XU Xinyu. Research progress of inorganic material-modified PI[J]. China Synthetic Resin and Plastics,2021,38(3):71-76(in Chinese).
    [9]
    李超, 程杰, 黄勇. 聚酰亚胺泡沫材料结构与性能研究[J]. 化工管理, 2019(15):184-185. doi: 10.3969/j.issn.1008-4800.2019.15.125

    LI Chao, CHENG Jie, HUANG Yong. Study on structure and properties of polyimide foam materials[J]. Chemical Enterprise Management,2019(15):184-185(in Chinese). doi: 10.3969/j.issn.1008-4800.2019.15.125
    [10]
    刘仪, 莫松, 潘玲英, 等. 耐高温有机无机杂化聚酰亚胺树脂及其复合材料[J]. 宇航材料工艺, 2018, 48(3):1-5.

    LIU Yi, MO Song, PAN Lingying, et al. Organic-inorganic hybrid polyimides and their composites with high temperature resistance[J]. Aerospace Materials & Technology,2018,48(3):1-5(in Chinese).
    [11]
    WENG L, LI H X, YANG X P, et al. Preparation and characterization of silica/polyimide nanocomposite films based on water-soluble poly(amic acid) ammonium salt[J]. Polymer Composites,2017,38(4):774-781. doi: 10.1002/pc.23637
    [12]
    刘少玉, 张福华, 张顶顶, 等. 聚酰亚胺纳米复合薄膜研究进展[J]. 工程塑料应用, 2021, 49(7):167-170. doi: 10.3969/j.issn.1001-3539.2021.07.029

    LIU Shaoyu, ZHANG Fuhua, ZHANG Dingding, et al. Research progress on polyimide nanocomposite films[J]. Engineering Plastics Application,2021,49(7):167-170(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.07.029
    [13]
    LINCOLN J E, HOUT S, FLAHERTY K, et al. High temperature organic/inorganic addition cure polyimide compo-sites, Part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science,2008,107(6):3557-3567. doi: 10.1002/app.27463
    [14]
    LEE A. Durability characterization of POSS-based polyimides and carbon-fiber composites for air force-related applications[R]. Air Force Office of Scientific Research Annual Technical Progress Report, East Lansing, 2007.
    [15]
    董晓娜, 付建平, 游胜勇, 等. 苯基POSS/有机硅树脂复合材料的制备及性能研究[J]. 中国胶粘剂, 2020, 29(10):20-23.

    DONG Xiaona, FU Jianping, YOU Shengyong, et al. Preparation and properties of phenyl-POSS/silicone resin composites[J]. China Adhesives,2020,29(10):20-23(in Chinese).
    [16]
    裘进浩, 董显林, 王齐华, 等. 压电精密驱动功能部件的基础研究[J]. 中国基础科学, 2019, 21(4):1-6.

    QIU Jinhao, DONG Xianlin, WANG Qihua, et al. Fundamental research of piezoelectric precision dricing systems[J]. China Basic Science,2019,21(4):1-6(in Chinese).
    [17]
    梁晨光, 张凤婷, 胡新苒. 高分子聚合材料在超声电机弹性体中的研究与应用[J]. 现代制造技术与装备, 2020, 56(9):46-48, 51.

    LIANG Chenguang, ZHANG Fengting, HU Xinran. Research and applications of polymer-based elastomer for ultrasonic motors[J]. Modern Manufacturing Technology and Equipment,2020,56(9):46-48, 51(in Chinese).
    [18]
    ZHU C, CHU X, YUAN S, et al. Development of an ultraso-nic linear motor with ultra-positioning capability and four driving feet[J]. Ultrasonics,2016,72:66-72. doi: 10.1016/j.ultras.2016.07.010
    [19]
    王春博. 高导热聚酰亚胺、聚芳醚酮复合材料制备及性能研究 [D]. 长春: 吉林大学, 2020.

    WANG Chunbo. Preparation and properties of high thermal conductive polyimide, poly(aryl ether ketone) composites[D]. Changchun: University of Jilin, 2020(in Chinese).
    [20]
    HONG J, CHOI H S, LEE K S, et al. Thermal properties of poly(dimethyl siloxane) nanocomposite filled with silicon carbide and multiwall carbon nanotubes[J]. Polymer International,2012,61(4):639-645. doi: 10.1002/pi.3224
    [21]
    LEUNG S N. Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships[J]. Composites Part B: Engineering,2018,150:78-92. doi: 10.1016/j.compositesb.2018.05.056
    [22]
    张萌萌, 贾广跃, 熊丽萍, 等. 碳纳米管/聚合物复合材料的导热模型进展[J]. 精细化工, 2020, 37(6):1081-1087, 1106.

    ZHANG Mengmeng, JIA Guangyue, XIONG Liping, et al. Progress on thermal conductivity model of carbon nano-tube polymer composites[J]. Fine Chemicals,2020,37(6):1081-1087, 1106(in Chinese).
    [23]
    童铭康, 吴秀平, 戚嵘嵘, 等. 铜粉填充UHMWPE导热材料性能的研究[J]. 工程塑料应用, 2010, 38(7):8-11. doi: 10.3969/j.issn.1001-3539.2010.07.002

    TONG Mingkang, WU Xiuping, QI Rongrong, et al. Study on properties of copper powder filling UHMWPE heat conduction material[J]. Engineering Plastics Application,2010,38(7):8-11(in Chinese). doi: 10.3969/j.issn.1001-3539.2010.07.002
    [24]
    解挺, 林子钧, 陈刚, 等. Cu粉含量对PTFE基复合材料导热性能影响的数值分析[J]. 金属功能材料, 2010, 17(2):52-56.

    XIE Ting, LIN Zijun, CHEN Gang, et al. Numerical analysis of influence of Cu particle content on thermal conductivity of PTFE-based composites[J]. Metallic Functional Materials,2010,17(2):52-56(in Chinese).
    [25]
    LIAO Q, LIU Z, LIU W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites[J]. Scientific Reports,2015,5(1):16543. doi: 10.1038/srep16543
    [26]
    JIANG Q, WU L. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining[J]. Journal of Reinforced Plastics and Composites,2016,35(4):287-294. doi: 10.1177/0731684415614086
    [27]
    LIN J L, SU S M, HE Y B, et al. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes[J]. New Carbon Materials,2020,35(1):66-72. doi: 10.1016/S1872-5805(20)60476-0
    [28]
    FATEMI S M, FATEMI S M, FOROUTAN M, et al. Recent developments concerning the dispersion of carbon nano-tubes in surfactant/polymer systems by MD simulation[J]. Journal of Nanostructure in Chemistry,2016,6(1):29-40. doi: 10.1007/s40097-015-0175-9
    [29]
    LI Y, WANG S, WANG Q, et al. Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study[J]. Carbon (New York),2018,129:504-509.
    [30]
    LIU J, WU S, ZHANG L, et al. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement[J]. Physical Chemistry Chemical Physics: PCCP,2011,13(2):518-529. doi: 10.1039/C0CP00297F
    [31]
    LI Y, WANG S, WANG Q, et al. Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber)/carbon nanotube composites[J]. Composites Part B: Engineering,2016,97:62-67. doi: 10.1016/j.compositesb.2016.04.053
    [32]
    HOSSEINI A, NASRABADI M N, ESFANDIARPOUR A. Effect of carbon nanotube on radiation resistance of CNT-Cu nanocomposite: MD simulation[J]. Journal of Materials Science,2020,55(10):4311-4320. doi: 10.1007/s10853-019-04309-7
    [33]
    雷浩, 赵盖, 尹宇航, 等. 氮化碳增强聚四氟乙烯摩擦学性能的分子动力学模拟[J]. 摩擦学学报, 2021, 41(2):223-229.

    LEI Hao, ZHAO Gai, YIN Yuhang, et al. Molecular dynamics simulation on the tribological properties of carbo nitride reinforced PTFE[J]. Tribology,2021,41(2):223-229(in Chinese).
    [34]
    SUN H. COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B,1998,102(38):7338-7364. doi: 10.1021/jp980939v
    [35]
    RIGBY D, SUN H, EICHINGER B E. Computer simulations of poly(ethylene oxide): Force field, PVT diagram and cyclization behaviour[J]. Polymer International,1997,44(3):311-330. doi: 10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
    [36]
    ASTM. Standard test method for pin abrasion testing: ASTM G132-96[S]. West Conshohocken: American Society for Testing and Materials, 1996.
    [37]
    中国国家标准化管理委员会. 塑料简支梁冲击部分的测定: GB/T 1043—2018[S]. 北京: 中国标准出版社. 2018.

    Standardization Administration of China. Plastics—Determination of charpy impact properties: GB/T 1043—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [38]
    孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究[J]. 物理学报, 2013, 62(18):366-374.

    SUN Weifeng, WANG Xuan. Molecular dynamics simulation of polyimide/copper nanoparticles composites[J]. Acta Physica Sinica,2013,62(18):366-374(in Chinese).
    [39]
    ZHANG D, WANG S X, LIU G S, et al. Thermal conductivity of polyimide resin-based composite with Cu fibers[J]. Materials Science Forum, 2016, 848: 43-48.
    [40]
    林荣会, 王丰元, 李淑玉, 等. 纳米铜改性酚醛树脂对摩擦材料摩擦磨损性能的影响[J]. 非金属矿, 2007(4):68-70. doi: 10.3969/j.issn.1000-8098.2007.04.022

    LIN Ronghui, WANG Fengyuan, LI Shuyu, et al. Affection of phenolic resin modified by copper nanoparticles on friction & wear characteristics of friction materials[J]. Non-Metallic Mines,2007(4):68-70(in Chinese). doi: 10.3969/j.issn.1000-8098.2007.04.022
    [41]
    王顺, 王康宁, 陈琦, 等. 高度可溶性聚酰亚胺增韧萘型环氧树脂[J]. 工程塑料应用, 2021, 49(6):8-15. doi: 10.3969/j.issn.1001-3539.2021.06.002

    WANG Shun, WANG Kangning, CHEN Qi, et al. Naphtalene type epoxy resin reinforced with highly soluble polyimide[J]. Engineering Plastics Application,2021,49(6):8-15(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.06.002
    [42]
    YONG L, WEI W, YU C, et al. The effects of polyamic acid on curing behavior, thermal stability, and mechanical properties of epoxy/DDS system[J]. Journal of Applied Polymer Science,2013,127(4):3213-3220. doi: 10.1002/app.37759
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (894) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return