Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Ruifeng, GUO Weiguo, LIU Lanting, et al. Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6054-6064. doi: 10.13801/j.cnki.fhclxb.20211213.003
Citation: WANG Ruifeng, GUO Weiguo, LIU Lanting, et al. Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6054-6064. doi: 10.13801/j.cnki.fhclxb.20211213.003

Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria

doi: 10.13801/j.cnki.fhclxb.20211213.003
  • Received Date: 2021-10-27
  • Accepted Date: 2021-12-03
  • Rev Recd Date: 2021-11-25
  • Available Online: 2021-12-13
  • Publish Date: 2022-12-15
  • The deformation and fracture behaviors of ductile materials under complex stress states are usually quite different from those under uniaxial loading conditions. In recent years, the development of fracture criteria and their application in numerical simulation have attracted great attention in many engineering fields. So, it is quite important to analyze the applicability of different fracture criteria over a wide range of stress states and select an appropriate model to accurately predict the fracture behavior. The fracture behavior of in-situ TiB2/2024 Al composite was investigated systematically over stress triaxialities ranging from −0.82 to 1.03, and lode angel parameters ranging from −1 to 1 by using an experimental approach. The fracture characteristics and underlying mechanisms are closely related to stress state, and both of the stress triaxiality and lode angle parameter should be included in the fracture criterion to predict fracture over a wide range of stress states. Based on the experimental data, five existing fracture criteria were calibrated, and their ability to describe and predict the fracture behavior was evaluated. The result shows that the fracture criteria which consider comprehensively the effects of the stress triaxiality, lode angle parameter and cut-off value can more accurately predict the fracture behavior of in-situ TiB2/2024 Al composite over a wide range of stress states.

     

  • loading
  • [1]
    SU J, LI Y, DUAN M, et al. Investigation on particle strengthening effect in in-situ TiB2/2024 composite by nanoindentation test[J]. Materials Science & Engineering A,2018,727:29-37.
    [2]
    WANG R, GUO W, WANG J, et al. Effects of stress state, strain rate, and temperature on fracture behavior of in situ TiB2/2024 Al composite[J]. Mechanics of Materials,2020,151:103641. doi: 10.1016/j.mechmat.2020.103641
    [3]
    KARTHISELVA N, BAKSHI S. Carbon nanotube and in-situ titanium carbide reinforced titanium diboride matrix composites synthesized by reactive spark plasma sintering[J]. Materials Science & Engineering A,2016,663:38-48.
    [4]
    YANG H, CAI Z, ZHANG Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50vol% TiB2/Al composites[J]. Ceramics International,2021,47:22121-22129. doi: 10.1016/j.ceramint.2021.04.234
    [5]
    LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia,2017,136:90-104. doi: 10.1016/j.actamat.2017.07.003
    [6]
    JIANG R, CHEN X, GE R, et al. Influence of TiB2 particles on machinability and machining parameter optimization of TiB2/Al MMCs[J]. Chinese Journal of Aeronautics,2018,31(1):187-196. doi: 10.1016/j.cja.2017.03.012
    [7]
    GENG J, LIU G, WANG F, et al. Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate[J]. Materials Science & Engineering A,2017,687:131-140.
    [8]
    LIN K, WANG W, JIANG R, et al. Thermo-mechanical behavior and constitutive modeling of in situ TiB2/7050 Al metal matrix composites over wide temperature and strain rate ranges[J]. Materials,2019,12(8):1212. doi: 10.3390/ma12081212
    [9]
    WANG H, ZHANG H, CUI Z, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China,2021,31(5):1235-1248. doi: 10.1016/S1003-6326(21)65574-7
    [10]
    叶想平, 李英雷, 翁继东, 等. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12):28-37. doi: 10.11868/j.issn.1001-4381.2016.001214

    YE Xiangping, LI Yinglei, WENG Jidong, et al. Research status on strengthening mechanism of particle-reinforced metal matrix composites[J]. Journal of Materials Engineering,2018,46(12):28-37(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001214
    [11]
    GAO X, ZHANG T, HAYDEN M, et al. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy[J]. International Journal of Plasticity,2009,25(12):2366-2382. doi: 10.1016/j.ijplas.2009.03.006
    [12]
    OROWAN E. Notch brittleness and the strength of metals[J]. Transactions of the Institution of Engineers and Shipbuilders in Scotland,1945,89:165-215.
    [13]
    BRIDGMAN P. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure[M]. New York: McGraw-Hill, 1952.
    [14]
    HANCOCK J, MACKENZIE A. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of Mechanics Physics of Solids, 1976, 24(2-3): 147-160.
    [15]
    HANCOCK J, BROWN D. On the role of strain and stress state in ductile failure[J]. Journal of Mechanics Physics of Solids,1983,31(1):1-24. doi: 10.1016/0022-5096(83)90017-0
    [16]
    MCCLINTOCK F. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics,1968,35(2):363-371. doi: 10.1115/1.3601204
    [17]
    RICE J, TRACEY D. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of Mechanics Physics of Solids, 1969, 17(3): 201-217.
    [18]
    KIM J, ZHANG G, GAO X. Modeling of ductile fracture: Application of the mechanism-based concepts[J]. International Journal of Solids and Structures,2007,44(6):1844-1862. doi: 10.1016/j.ijsolstr.2006.08.028
    [19]
    BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity,2008,24(6):1071-1096. doi: 10.1016/j.ijplas.2007.09.004
    [20]
    GANJIANI M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle[J]. European Journal of Mechanics/A Solids,2020,84:104048. doi: 10.1016/j.euromechsol.2020.104048
    [21]
    JOHNSON G, COOK W. Fracture characteristics of three metals subjected to various strains, strain rates, temper-atures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [22]
    LOU Y, YOON J, HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity,2014,54(1):56-80.
    [23]
    BAI Y, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161(1):1-20. doi: 10.1007/s10704-009-9422-8
    [24]
    BAI Y, TENG X, WIERZBICKI T. On the application of stress triaxiality formula for plane strain fracture testing[J]. Journal of Engineering Materials and Technology,2009,131(2):13-22.
    [25]
    WANG J, GUO W, GUO J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy[J]. Journal of Materials Engineering and Performance,2016,25(5):2043-2052. doi: 10.1007/s11665-016-2049-9
    [26]
    BUTCHER C, ABEDINI A. Shear confusion: Identification of the appropriate equivalent strain in simple shear using the logarithmic strain measure[J]. International Journal of Mechanical Sciences,2017,134:273-283. doi: 10.1016/j.ijmecsci.2017.10.005
    [27]
    HUANG J, GUO Y, QIN D, et al. Influence of stress triaxiality on the failure behavior of Ti-6Al-4V alloy under a broad range of strain rates[J]. Theoretical and Applied Fracture Mechanics,2018,97:48-61. doi: 10.1016/j.tafmec.2018.07.008
    [28]
    ROTH C, MOHR D. Determining the strain to fracture for simple shear for a wide range of sheet metals[J]. International Journal of Mechanical ences,2018,149:224-240. doi: 10.1016/j.ijmecsci.2018.10.007
    [29]
    MIRONE G, CORALLO D. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening[J]. International Journal of Plasticity,2010,26(3):348-371. doi: 10.1016/j.ijplas.2009.07.006
    [30]
    BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,2004,46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (1102) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return