Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LUO Jingsong, FU Qingyao, LIU Yuxiang, et al. Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001
Citation: LUO Jingsong, FU Qingyao, LIU Yuxiang, et al. Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5768-5777. doi: 10.13801/j.cnki.fhclxb.20211207.001

Synthesis and photocatalytic hydrogen production performance of nickel-iron hydrotalcite/poly(dibenzothiophene-S,S-dioxide)composites

doi: 10.13801/j.cnki.fhclxb.20211207.001
  • Received Date: 2021-09-22
  • Accepted Date: 2021-11-26
  • Rev Recd Date: 2021-11-09
  • Available Online: 2021-12-08
  • Publish Date: 2022-12-01
  • Two-dimensional layered double hydroxide (LDH) of Ni7Fe1 is the most excellent catalyst in the catalytic system for its facile preparation, abundant sources, and low-cost, which is also an ideal substitute for noble metal catalyst in photocatalytic production. In this study, we prepared composites of Ni7Fe1/PDBTSO by in-situ polymerization of Ni7Fe1 and poly(dibenzothiophene-S,S-dioxide) (PDBTSO). Furthermore, we investigated their catalytic performance. The experimental results show that 15-Ni7Fe1/PDBTSO exhibites the hydrogen generation rate of 36.8 mmol·g−1·h−1, which is 22.6% higher than that of PDBTSO with 3wt% Pt as co-catalyst. Besides, 15-Ni7Fe1/PDBTSO shows good photocatalytic stability, making it an ideal candidate for photocatalytic hydrogen production. XRD, FTIR, TEM and XPS were used to explore the mechanism of photocatalytic hydrogen production performance. The high photocatalytic efficiency and low cost of Ni7Fe1/PDBTSO provide a new idea for the field of photocatalytic hydrogen production.

     

  • loading
  • [1]
    WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [2]
    CHENG C, WANG X C, LIN Y Y, et al. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution[J]. Polymer Chemistry,2018,9(35):4468-4475. doi: 10.1039/C8PY00722E
    [3]
    LIU L J, KOCHMAN M A, XU Y J, et al. Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water[J]. Journal of Materials Chemistry A,2021,9(32):17242-17248. doi: 10.1039/D1TA04288B
    [4]
    DAI C H, LIU B. Conjugated polymers for visible-light-driven photocatalysis[J]. Energy & Environmental Science,2020,13(1):24-52.
    [5]
    WANG Z J, YANG X Y, YANG T J, et al. Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production[J]. ACS Catalysis,2018,8(9):8590-8596. doi: 10.1021/acscatal.8b02607
    [6]
    FU J W, YU J G, JIANG C J, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials,2018,8(3):1701503. doi: 10.1002/aenm.201701503
    [7]
    YANG C, MA B C, ZHANG L Z, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis[J]. Angewandte Chemie International Edition,2016,128(32):9348-9352.
    [8]
    DAMAS G, MARCHIORI C F N, ARAUJO C M. On the design of donor–acceptor conjugated polymers for photocatalytic hydrogen evolution reaction: First-principles theory-based assessment[J]. The Journal of Physical Chemistry C,2018,122(47):26876-26888. doi: 10.1021/acs.jpcc.8b09408
    [9]
    王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).
    [10]
    胡新军, 胡勇, 谢文玲, 等. ZnS/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2019, 36(1):207-212. doi: 10.13801/j.cnki.fhclxb.20180509.001

    HU Xinjun, HUong, XIE Wenling, et al. Preparation and photocatalytic properties of ZnS/reduced graphene oxide composite[J]. Acta Materiae Compositae Sinica,2019,36(1):207-212(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180509.001
    [11]
    黄有鹏, 吴福礼, 李兵, 等. WO3/g-C3N4复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(12):4287-4294. doi: 10.13801/j.cnki.fhclxb.20210303.001

    HUANG Youpeng, WU Fuli, LI Bing, et al. Preparation and visible light catalytic performance of WO3/g-C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(12):4287-4294(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210303.001
    [12]
    ZHANG X, SHEN F, HU Z C, et al. Biomass nanomicelles assist conjugated polymers/Pt cocatalysts to achieve high photocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering,2019,7(4):4128-4135.
    [13]
    SUN D R, LIU W J, FU Y H, et al. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry-A European Journal,2014,20(16):4780-4788. doi: 10.1002/chem.201304067
    [14]
    LIU J Z, LI Y H, ZHOU X D, et al. Positively charged Pt-based cocatalysts: An orientation for achieving efficient photocatalytic water splitting[J]. Journal of Materials Chemistry A,2020,8(1):17-26. doi: 10.1039/C9TA10568A
    [15]
    XIAO N, LI S, LI X, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41(4):642-671. doi: 10.1016/S1872-2067(19)63469-8
    [16]
    LI X G, BI W T, ZHANG L, et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution[J]. Advanced Materials,2016,28(12):2427-2431. doi: 10.1002/adma.201505281
    [17]
    MENG X Y, YANG Y S, CHEN L F, et al. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts[J]. ACS Catalysis,2019,9(5):4226-4235. doi: 10.1021/acscatal.9b00238
    [18]
    GAO Z, LIU F Q, WANG L, et al. Hierarchical Ni2P@NiFeAlOx nanosheet arrays as bifunctional catalysts for superior overall water splitting[J]. Inorganic Chemistry,2019,58(5):3247-3255. doi: 10.1021/acs.inorgchem.8b03327
    [19]
    GAO Y, DOU L G, ZHANG S, et al. Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation[J]. Chemical Engineering Journal,2021,420:127693. doi: 10.1016/j.cej.2020.127693
    [20]
    NAYAK S, MOHAPATRA L, PARIDA K. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction[J]. Journal of Materials Chemistry A,2015,3(36):18622-18635. doi: 10.1039/C5TA05002B
    [21]
    NAYAK S, PARIDA K M. Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions[J]. Scientific Reports,2019,9(1):2458. doi: 10.1038/s41598-019-39009-4
    [22]
    SAHOO D P, PATNAIK S, PARIDA K. Construction of a Z-scheme dictated WO3-X/Ag/ZnCr LDH synergistically visible light-induced photocatalyst towards tetracycline degradation and H2 evolution[J]. ACS Omega,2019,4(12):14721-14741. doi: 10.1021/acsomega.9b01146
    [23]
    SPRICK R S, BONILLO B, CLOWES R, et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts[J]. Angewandte Chemie-International Edition,2016,55(5):1792-1796. doi: 10.1002/anie.201510542
    [24]
    DAI C H, XU S D, LIU W, et al. Dibenzothiophene-S, S-dioxide-based conjugated polymers: Highly efficient photocatalyts for hydrogen production from water under visible light[J]. Small,2018,14(34):1801839. doi: 10.1002/smll.201801839
    [25]
    SACHS M, SPRICK R S, PEARCE D, et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution[J]. Nature Communications,2018,9(1):4968. doi: 10.1038/s41467-018-07420-6
    [26]
    SHU G, LI Y D, WANG Z, et al. Poly(dibenzothiophene-S, S-dioxide) with visible light-induced hydrogen evolution rate up to 44.2 mmol·h−1·g−1 promoted by K2HPO4[J]. Applied Catalysis B: Environmental,2020,261:118230. doi: 10.1016/j.apcatb.2019.118230
    [27]
    XU K L, CHEN G M, SHEN J Q, et al. Exfoliation and dispersion of micrometer-sized LDH particles in poly(ethylene terephthalate) and their nanocomposite thermal stability[J]. Applied Clay Science,2013,75-76:114-119. doi: 10.1016/j.clay.2013.02.004
    [28]
    SAIAH F B D, SU B L, BETTAHAR N. Nickel-iron layered double hydroxide (LDH): Textural properties upon hydrothermal treatments and application on dye sorption[J]. Journal of Hazardous Materials,2009,165(1):206-217.
    [29]
    XU Q L, ZHANG L Y, YU J G, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials Today,2018,21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008
    [30]
    ZHANG X Z, XIAO J, HOU M, et al. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid[J]. Applied Catalysis B: Environmental,2018,224:871-876. doi: 10.1016/j.apcatb.2017.11.038
    [31]
    MOHAPATRA L, PARIDA K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A,2016,4(28):10744-10766. doi: 10.1039/C6TA01668E
    [32]
    WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews,2019,48(7):2109-2125. doi: 10.1039/C8CS00542G
    [33]
    SHU G, WANG Y, LI Y D, et al. A high performance and low cost poly(dibenzothiophene-S, S-dioxide)@TiO2 compo-site with hydrogen evolution rate up to 51.5 mmol·h−1·g−1[J]. Journal of Materials Chemistry A,2020,8(35):18292-18301. doi: 10.1039/D0TA06159J
    [34]
    WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chinese Journal of Catalysis,2021,42(5):667-669. doi: 10.1016/S1872-2067(20)63705-6
    [35]
    XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chemistry,2020,6(7):1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [36]
    ZHEN L, DAN J, WANG Z H. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,529:147071. doi: 10.1016/j.apsusc.2020.147071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1048) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return