Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
DU Hao, JI Ting, ZHAO Jie, et al. Preparation of phenanthrenequinone modified porous carbon nanotube composite material for symmetric supercapacitor[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3281-3291. doi: 10.13801/j.cnki.fhclxb.20211129.001
Citation: DU Hao, JI Ting, ZHAO Jie, et al. Preparation of phenanthrenequinone modified porous carbon nanotube composite material for symmetric supercapacitor[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3281-3291. doi: 10.13801/j.cnki.fhclxb.20211129.001

Preparation of phenanthrenequinone modified porous carbon nanotube composite material for symmetric supercapacitor

doi: 10.13801/j.cnki.fhclxb.20211129.001
  • Received Date: 2021-06-30
  • Accepted Date: 2021-11-19
  • Rev Recd Date: 2021-11-14
  • Available Online: 2021-12-02
  • Publish Date: 2022-07-30
  • In purpose of obtaining electrode materials with superior electrochemical properties for supercapacitor, porous carbon nanotubes (PCNTs) were firstly prepared by the carbonization and activation of polypyrrole (PPy) nanotubes. The obtained PCNTs were further modified with 9,10-phenanthrenequinone(PQ) molecules via π-π stacking interaction through one-step solvothermal method. The electrochemical performance of the obtained composites (PQ/PCNTs) with different mass ratios of PQ to PCNTs as the electrode materials for supercapacitors were investigated by cyclic voltammetry (CV), galvonostantic charging-discharging (GCD) and electrochemical impedance spectroscopy (EIS). The experimental results show that the composites with the mass ratio of PQ molecule to PCNTs of 5∶5 achieves the largest specific capacity of 407.7 C∙g−1 at a current density of 1 A∙g−1. The resultant composite also exhibits excellent rate capability (the specific capacity at a current density of 50 A∙g−1 is equal to 307.3 C∙g−1) and cycling stability (capacitance retention of 91.4% after 10,000 cycles at the current density of 10 A∙g−1). Furthermore, a symmetric supercapacitor was assembled with the mass ratio of PQ molecule to PCNTs of 5∶5 as electrode materials to investigate the practical applications of the composites. And the assembled symmetric supercapacitor delivers an energy density as high as 21.5 W∙h∙kg−1 and a power density of 0.8 kW∙kg−1.

     

  • loading
  • [1]
    AZMAN N H N, MAMAT MAT NAZIR M S, NGEE L H, et al. Graphene-based ternary composites for supercapacitors[J]. International Journal of Energy Research,2018,42(6):2104-2116. doi: 10.1002/er.4001
    [2]
    GAO Y. Graphene and polymer composites for supercapacitor applications: A review[J]. Nanoscale Research Letters,2017,12(1):387.
    [3]
    王 健, 胡稳茂, 王庚超. 功能化碳纳米管膜负载聚(2, 5-二羟基-1, 4-苯醌硫)柔性电极的制备及在柔性非对称超级电容器中的应用[J]. 功能高分子学报, 2019, 32(2):184-191.

    WANG Jian, HU Wenmao, WANG Gengchao. Preparation of poly(2, 5-dihydroxy-1, 4-benzoquinonesulfur) flexible electrode supported by functionalized carbon nanotube film and its application in flexible asymmetric supercapacitors[J]. Function Acta Polymerica Sinica,2019,32(2):184-191(in Chinese).
    [4]
    HUANG L, SANTIAGO D, LOYSELLE P, et al. Graphene-based nanomaterials for flexible and wearable supercapacitors[J]. Small,2018,14(43):e1800879. doi: 10.1002/smll.201800879
    [5]
    SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    [6]
    CHEN J, LI C, SHI G. Graphene materials for electrochemical capacitors[J]. The Journal of Physical Chemistry Letters,2013,4(8):1244-1253. doi: 10.1021/jz400160k
    [7]
    ZHAO J, BURKE A F. Electrochemical capacitors: Materials, technologies and performance[J]. Energy Storage Materials,2021,36:31-55.
    [8]
    YANG X, YANG Y, ZHANG Q, et al. Dissected carbon nanotubes functionalized by 1-hydroxyanthraquinone for high-performance asymmetric supercapacitors[J]. RSC Advances,2017,7(76):48341-48353. doi: 10.1039/C7RA09534A
    [9]
    CHEN X, WANG H, YI H, et al. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance[J]. The Journal of Physical Chemistry C,2014,118(16):8262-8270. doi: 10.1021/jp5009626
    [10]
    WU Q, SUN Y Q, BAI H, et al. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J]. Physical Chemistry Chemical Physics,2011,13(23):11193-11198. doi: 10.1039/c1cp20980a
    [11]
    BOOTA M, CHEN C, BÉCUWE M, et al. Pseudocapacitance and excellent cyclability of 2, 5-dimethoxy-1, 4-benzoquinone on graphene[J]. Energy & Environmental Science,2016,9(8):2586-2594.
    [12]
    YANG X, ZHU Z, DAI T, et al. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template[J]. Macromolecular Rapid Communications,2005,26(21):1736-1740. doi: 10.1002/marc.200500514
    [13]
    李文光, 李梅, 姚金, 等. 聚吡咯/多壁碳纳米管复合材料的制备与性能研究[J]. 材料导报B:研究篇, 2012, 26(7):63-67.

    LI Wenguang, LI Mei, YAO Jin, et al. Preparation and properties of polypyrrole/multi-wall carbon nanotube composites[J]. Materials Review B:Research,2012,26(7):63-67(in Chinese).
    [14]
    GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics-Condensed Matter,2009,21(39):395502. doi: 10.1088/0953-8984/21/39/395502
    [15]
    HOU L, KONG C, HU Z, et al. Non-covalently self-assembled organic molecules graphene aerogels to enhance supercapacitive performance[J]. Applied Surface Science,2020,508:145192. doi: 10.1016/j.apsusc.2019.145192
    [16]
    LV L, HU Z, AN N, et al. A green and sustainable organic molecule electrode prepared by fluorenone for more efficient energy storage[J]. Electrochimica Acta,2021,377:138088. doi: 10.1016/j.electacta.2021.138088
    [17]
    SENOH H, YAO M, SAKAEBE H, et al. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries[J]. Electrochimica Acta,2011,56(27):10145-10150. doi: 10.1016/j.electacta.2011.08.115
    [18]
    LI C, XUE J, MA J, et al. Conjugated dicarboxylate with extended naphthyl skeleton as an advanced organic anode for potassium-ion battery[J]. Journal of The Electrochemical Society,2018,166(3):A5221-A5225.
    [19]
    LE COMTE A, CHHIN D, GAGNON A, et al . Spontaneous grafting of 9, 10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte[J]. Journal of Materials Chemistry A,2015,3(11):6146-6156. doi: 10.1039/C4TA05536E
    [20]
    LEE S, CHOI C, CHUNG M, et al. Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors[J]. RSC Advances,2016,6(60):55577-55583. doi: 10.1039/C6RA07825G
    [21]
    SONG Z, ZHAN H, ZHOU Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries[J]. Chemical Communications (Camb),2009(4):448-450. doi: 10.1039/B814515F
    [22]
    GUO B, YANG Y, HU Z, et al. Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor[J]. Electrochimica Acta,2017(223):74-84.
    [23]
    LE FEVRE L, CAO J, KINLOCH I, et al. Systematic comparison of graphene materials for supercapacitor electrodes[J]. ChemistryOpen,2019,8(4):418-428. doi: 10.1002/open.201900004
    [24]
    LI Z, QIN P, WANG L, et al. Amine-enriched graphene quantum dots for high-pseudocapacitance supercapacitors[J]. Electrochimica Acta,2016(208):260-266.
    [25]
    YANG H, KANNAPPAN S, PANDIAN A S, et al. Graphene supercapacitor with both high power and energy density[J]. Nanotechnology,2017,28(44):445401. doi: 10.1088/1361-6528/aa8948
    [26]
    CHEN W, RAKHI R B, ALSHAREEF H N. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte[J]. Nanoscale,2013,5(10):4134-4138. doi: 10.1039/c3nr00773a
    [27]
    POTPHODE D, SINHA L, SHIRAGE P. Redox additive enhanced capacitance: Multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage[J]. Applied Surface Science,2019(469):162-172.
    [28]
    AN N, HU Z, WU H, et al. Organic multi-electron redox couple-induced functionalization for enabling ultrahigh rate and cycling performances of supercapacitors[J]. Journal of Materials Chemistry A,2017,5(48):25420-25430. doi: 10.1039/C7TA07389E
    [29]
    GAO M, WANG L, ZHAO B, et al. Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors[J]. Carbohydrate Polymers,2021,255:117397.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (935) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return