Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LU Yao, ZHAO Yufen, TIAN Huixia, et al. Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005
Citation: LU Yao, ZHAO Yufen, TIAN Huixia, et al. Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20211116.005

Effect of polyacrylonitrile nanofiber membrane on interlaminar shear properties of poly-p-phenylene benzobisoxazole fabric reinforced composites

doi: 10.13801/j.cnki.fhclxb.20211116.005
  • Received Date: 2021-10-09
  • Accepted Date: 2021-11-08
  • Rev Recd Date: 2021-11-01
  • Available Online: 2021-11-17
  • Publish Date: 2022-12-01
  • The surface bonding ability of poly-p-phenylene benzobisoxazole (PBO) fibers is weak, and its interface strength after being compounded with resin is low, which affects the mechanical properties of composite materials. This research coated the PBO plain weave fabric with a layer of polyacrylonitrile (PAN) nanofiber membrane by electrospinning. The composite material was subsequently obtained by layering and curing, which formed a gradient interface between the PBO fibers and the epoxy resin to improve the interface strength of composite materials. The short beam shear test of composites was carried out by universal testing machine, and the best interlayer performance enhancement effect was determined by changing the spinning voltage. The relative stiffness image in interface was obtained with atomic force microscope (AFM) to investigate the enhancing mechanism of interface strength. The results show that when the spinning voltage is 20 kV, the interlaminar performance of the composite is most obvious under the condition that the pushing speed of the syringe pump and the rotating speed of the collecting roller remain unchanged. Compared with the pure PBO fibers reinforced composites, the interlaminar shear strength of the PBO fiber reinforced composites coated with film is increased by 40.1%. The gradient interface structure helps to transfer the stress evenly from the resin matrix to the fiber reinforcement and improve the mechanical properties of the composites.

     

  • loading
  • [1]
    ZENG J, KONG H, DU X, et al. Surface modification of PBO fibers with 2, 2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane in supercritical carbon dioxide for enhancing inter-facial strength[J]. Materials Today Chemistry,2021,20:100426.
    [2]
    胡大勇, 张涛, 金俊弘, 等. 羟基基团对PBO纤维表面性能及界面粘结性能的影响[J]. 复合材料学报, 2009, 26(3):78-83.

    HU Dayong, ZHANG Tao, JIN Junhong, et al. The effect of hydroxyl groups on the surface properties and interfacial bonding properties of PBO fibers[J]. Journal of Composite Materials,2009,26(3):78-83(in Chinese).
    [3]
    郭玲, 赵亮, 胡娟, 等. 国产PBO纤维研究现状及发展趋势[J]. 高科技纤维与应用, 2014, 39(2):11-15, 38. doi: 10.3969/j.issn.1007-9815.2014.02.003

    GUO Ling, ZHAO Liang, HU Juan, et al. Research status and development trend of domestic PBO fiber[J]. Hi-Tech Fiber and Application,2014,39(2):11-15, 38(in Chinese). doi: 10.3969/j.issn.1007-9815.2014.02.003
    [4]
    尚金龙, 李思海, 陈贻明. 纤维增强塑料在航空航天领域中的应用[J]. 塑料工业, 2019, 47(1):148-151. doi: 10.3969/j.issn.1005-5770.2019.01.032

    SHANG Jinlong, LI Sihai, CHEN Yiming. Application of fiber reinforced plastics in aerospace industry[J]. Plastics Industry,2019,47(1):148-151(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.01.032
    [5]
    张忠峰, 王克俭. 纤维增强防弹复合材料及应用[J]. 塑料包装, 2021, 31(2):51-55. doi: 10.3969/j.issn.1006-9828.2021.02.011

    ZHANG Zhongfeng, WANG Kejian. Fiber reinforced ballistic composite material and its application[J]. Plastic Packaging,2021,31(2):51-55(in Chinese). doi: 10.3969/j.issn.1006-9828.2021.02.011
    [6]
    WANG Q, CHEN P, JIA C, et al. Improvement of PBO fiber surface and PBO/PPESK composite interface properties with air DBD plasma treatment[J]. Surface & Interface Analysis,2012,44(5):548-553.
    [7]
    YU L, LU F, HUANG X H, et al. Facile Interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers[J]. ACS Applied Materials & Interfaces,2019,11(42):39292-39303.
    [8]
    YAN H, FENG S, ZHANG Z, et al. Improvement of interfacial adhesion between PBO fibers and cyanate ester matrix[J]. Journal of Applied Polymer Science,2014,131(9):742-751.
    [9]
    陈平, 张承双, 王静, 等. PBO纤维及其表面改性技术的研究进展[J]. 纤维复合材料, 2006(4):50-54. doi: 10.3969/j.issn.1003-6423.2006.04.015

    CHEN Ping, ZHANG Chengshuang, WANG Jing, et al. Research progress of PBO fiber and its surface modification technology[J]. Fiber Composite Materials,2006(4):50-54(in Chinese). doi: 10.3969/j.issn.1003-6423.2006.04.015
    [10]
    FAN W, TIAN H X, WANG H, et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment[J]. Polymer Testing,2018,72:147-156.
    [11]
    ZHANG X, CHEN P, YU Q, et al. Effects of plasma-induced epoxy coatings on surface properties of Twaron fibers and improved adhesion with PPESK resins[J]. Vacuum,2013,97(Complete):1-8.
    [12]
    TANG L, ZHANG J, GU J. Random copolymer membrane coated PBO fibers with significantly improved interfacial adhesion for PBO fibers/cyanate ester composites[J]. Chinese Journal of Aeronautics,2020,34(2):659-668.
    [13]
    CHEN Y, XU D, ZENG Q, et al. Influence of DBD-grafted multi-carboxyl polyurethane on interfacial properties of PBO fibre-reinforced BMI resin composites[J]. Applied Surface Science,2020,512:145662.
    [14]
    CHEN L, HU Z, WU Z, et al. POSS-bound ZnO nanowires as interphase for enhancing interfacial strength and hydrothermal aging resistance of PBO fiber/epoxy resin compo-sites[J]. Composites Part A: Applied Science& Manufacturing,2017,96:1-8.
    [15]
    张祯, 王斌, 吕钧炜, 等. 提高PBO纤维/环氧树脂界面相容性的研究进展[J]. 玻璃钢/复合材料, 2018(11):104-108.

    ZHANG Zhen, WANG Bin, LU Junwei, et al. Research progress on improving the compatibility of PBO fiber/epoxy resin interface[J]. FRP/Composite Materials,2018(11):104-108(in Chinese).
    [16]
    王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG Dong, XUAN Lihui, LI Chao, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Journal of Composite Materials,2018,35(4):964-972(in Chinese).
    [17]
    SONG B, LIU Z D, PAN D, et al. Layer-by-layer constructing interface with rigid-flexible transition structure for improving interfacial adhesion of PBO fiber composites[J]. Composites Communications,2020,22:10046.
    [18]
    JIANG S, HOU H, GREINER A, et al. Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-for-maldehyde composites[J]. ACS Applied Materials & Interfaces,2012,4(5):2597-2603.
    [19]
    MOHANNAD T, ALJARRAH N. Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering, 2019, 165: 379-385.
    [20]
    SUBAGIA I, JIANG Z, TIJING L D, et al. Hybrid multi-scale basalt fiber-epoxy composite laminate reinforced with electrospun polyurethane nanofibers containing carbon nanotubes[J]. Fibers & Polymers,2014,15(6):1295-1302.
    [21]
    付泽浩, 向阳, 马传国, 等. FeOOH纳米粒子协同聚偏氟乙烯电纺纤维膜插层增强碳纤维复合材料层间断裂韧性[J]. 复合材料学报, 2021, 39(4):1582-1591.

    FU Zehao, XIANG Yang, MA Chuanguo, et al. Intercalation of FeOOH nanoparticles and polyvinylidene fluoride electrospun fiber membrane to enhance interlaminar fracture toughness of carbon fiber composites[J]. Chinese Journal of Composites,2021,39(4):1582-1591(in Chinese).
    [22]
    中国国家标准化管理委员会. 聚合物基复合材料短梁剪切强度试验方法: GB/T 30969—2014[S]. 北京: 中国标准出版社, 2014.

    China National Standardization Administration. Test method for shear strength of polymer matrix composites short beams: GB/T 30969—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [23]
    DEITZEL J M, KLEINMEYER J D, HARRIS D E A, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261-272. doi: 10.1016/S0032-3861(00)00250-0
    [24]
    ZONG X H, KWANGSOK K, FANG D F, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer,2002,43(16):4403-4412. doi: 10.1016/S0032-3861(02)00275-6
    [25]
    SAGHAFI H, MOALLEMZADEH A R, ZUCCHELLI A, et al. Shear mode of fracture in composite laminates toughened by polyvinylidene fluoride nanofibers[J]. Composite Structures,2019,227:111327.
    [26]
    XUE L L, FAN W, YU Y, et al. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters[J]. Advanced Fiber Materials,2021,3:239-250. doi: 10.1007/s42765-021-00081-z
    [27]
    FAN W, LI J L, ZHENG Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer[J]. Polymer Testing,2015,44:177-185. doi: 10.1016/j.polymertesting.2015.04.010
    [28]
    FAN W, LI J L, WANG H, et al. Influence of thermo-oxidative aging on the impact property of conventional and graphene-based carbon fabric composites[J]. Journal of Reinforced Plastics and Composites,2015,34(2):116-130. doi: 10.1177/0731684414565225
    [29]
    TIAN H, FAN W, GE S, et al. Nanofiber-sheathed structure for enhancing interfacial properties of basalt fiber-reinforced composites[J]. Composites Communications,2021,23:10058.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (906) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return