Citation: | CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630. DOI: 10.13801/j.cnki.fhclxb.20211025.001 |
[1] |
QIN G J, ZHANG P, HOU X Q, et al. Risk assessment for oil leakage under the common threat of multiple natural hazards[J]. Environmental Science and Pollution Research,2020,27(14):16507-16520. DOI: 10.1007/s11356-020-08184-7
|
[2] |
魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736. DOI: 10.13801/j.cnki.fhclxb.20190109.002
WEI Qian, LIN Shaohui, FENG Xianshe, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20190109.002
|
[3] |
LIU X, MENG R L, XING Q G, et al. Assessing oil spill risk in the Chinese Bohai sea: A case study for both ship and platform related oil spills[J]. Ocean & Coastal Management,2015,108:140-146. DOI: 10.1016/j.ocecoaman.2014.08.016
|
[4] |
DE OLIVEIRA SOARES M, TEIXEIRA C E P, BEZERRA L E A, et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster[J]. Marine Policy,2020,115:103879. DOI: 10.1016/j.marpol.2020.103879
|
[5] |
NOROUZI N, FANI M, ZIARANI Z K. The fall of oil age: A scenario planning approach over the last peak oil of human history by 2040[J]. Journal of Petroleum Science and Engineering,2020,188:106827. DOI: 10.1016/j.petrol.2019.106827
|
[6] |
LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review[J]. Progress in Polymer Science,2018,87:1-33. DOI: 10.1016/j.progpolymsci.2018.06.009
|
[7] |
XUE Z X, CAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Che-mistry A,2014,2(8):2445-2460. DOI: 10.1039/C3TA13397D
|
[8] |
FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie,2004,116(15):2046-2048. DOI: 10.1002/ange.200353381
|
[9] |
WEI Y, QI H, GONG X, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2018,5(23):1800576. DOI: 10.1002/admi.201800576
|
[10] |
QIU L, SUN Y H, GUO Z G. Designing novel superwetting surfaces for high-efficiency oil-water separation: Design principles, opportunities, trends and challenges[J]. Jour-nal of Materials Chemistry A,2020,8(33):16831-16853. DOI: 10.1039/D0TA02997A
|
[11] |
ZENG Q T, MA P M, LAI D H, et al. Superhydrophobic reduced graphene oxide@poly(lactic acid) foam with electrothermal effect for fast separation of viscous crude oil[J]. Journal of Materials Science,2021,56(19):11266-11277. DOI: 10.1007/s10853-021-06029-3
|
[12] |
SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science,2018,4(9):1102-1112. DOI: 10.1021/acscentsci.8b00504
|
[13] |
SU M J, LIU Y, LI S H, et al. A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation[J]. Chemical Engineering Journal,2019,361:364-372. DOI: 10.1016/j.cej.2018.12.082
|
[14] |
LI J, YAN L, LI W J, et al. Superhydrophilic-underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation[J]. Materials Letters,2015,153:62-65. DOI: 10.1016/j.matlet.2015.03.146
|
[15] |
LIU Y, YIN J Y, FU Y B, et al. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh[J]. Chemical Engineering Journal,2020,382:122925. DOI: 10.1016/j.cej.2019.122925
|
[16] |
GE B, HAN L, LIANG X, et al. Fabrication of superhydrophobic Cu-BiOBr surface for oil/water separation and water soluble pollutants degradation[J]. Applied Surface Science,2018,462:583-589. DOI: 10.1016/j.apsusc.2018.08.174
|
[17] |
BAIG U, FAIZAN M, SAJID M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review[J]. Advances in Colloid and Interface Science,2020,285:102276. DOI: 10.1016/j.cis.2020.102276
|
[18] |
BAIG U, MATIN A, GONDAL M, et al. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants[J]. Journal of Cleaner Production,2019,208:904-915. DOI: 10.1016/j.jclepro.2018.10.079
|
[19] |
WANG Z X, HAN M C, ZHANG J, et al. Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation[J]. Journal of Membrane Science,2020,593:117383. DOI: 10.1016/j.memsci.2019.117383
|
[20] |
BET-MOUSHOUL E, MANSOURPANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal,2016,283:29-46. DOI: 10.1016/j.cej.2015.06.124
|
[21] |
LI M, BIAN C, YANG G X, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion[J]. Chemical Engineering Journal,2019,368:350-358. DOI: 10.1016/j.cej.2019.02.176
|
[22] |
YANG J, KWON G J, HWANG K, et al. Cellulose-chitosan antibacterial composite films prepared from LiBr solution[J]. Polymers,2018,10(10):1058. DOI: 10.3390/polym10101058
|
[23] |
EL-SAYED N S, EL-SAKHAWY M, BRUN N, et al. New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation[J]. Carbohydrate polymers,2018,199:193-204. DOI: 10.1016/j.carbpol.2018.07.004
|
[24] |
LI Z Q, DONG Y C, LI B, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: Conditions optimization and stain decomposition pathway[J]. Materials & Design,2018,140:366-375. DOI: 10.1016/j.matdes.2017.12.014
|
[25] |
林细标. 工业废水废气治理技术[J]. 环境与发展, 2019, 31(4):44, 46.
LIN Xibiao. Treatment technology in industrial wastewater waste gas[J]. Environment and Development,2019,31(4):44, 46(in Chinese).
|
[26] |
KONG A Q, JI Y H, MA H H, et al. A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution[J]. Journal of Cleaner Production,2018,192:801-808. DOI: 10.1016/j.jclepro.2018.04.271
|
[27] |
JIANG X L, PENG Z T, GAO Y R, et al. Preparation and visible-light photocatalytic activity of Ag-loaded TiO2@Y2O3 hollow microspheres with double-shell structure[J]. Powder Technology,2021,377:621-631. DOI: 10.1016/j.powtec.2020.09.030
|
[28] |
XIE Z W, LIN J C, XU M Y, et al. Novel Fe3O4 nanoparticle/β-cyclodextrin-based polymer composites for the removal of methylene blue from water[J]. Industrial & Engineering Chemistry Research,2020,59(26):12270-12281. DOI: 10.1021/acs.iecr.0c01115
|
[29] |
LI F R, KONG W T, BHUSHAN B, et al. Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification[J]. Journal of Colloid and Interface Science,2019,557:395-407. DOI: 10.1016/j.jcis.2019.09.042
|
[1] | ZHANG Zhengwei, LI Hui, LI Zelin, SUN Guowei, CUI Hongbo, DENG Yichen. Finite element modeling analysis and verification of fiber-reinforced origami sandwich plates with shear-hardening materials under high velocity impact[J]. Acta Materiae Compositae Sinica. |
[2] | TAN Huancheng, XU Shanying, HUANG Xiong, GUAN Yupu, CHEN Wei. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139-1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002 |
[3] | WEN Quan, GUO Dongming, GAO Hang, ZHAO Dong. Comprehensive evaluation method for carbon/epoxy composite hole-making damages[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 265-272. DOI: 10.13801/j.cnki.fhclxb.20151014.001 |
[4] | LI Jia, SHI Fenghui, LYU Jing, ZHANG Baoyan. Characterization and evaluation of electric-arc-produced graphene material[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1658-1662. DOI: 10.13801/j.cnki.fhclxb.20150323.001 |
[5] | LUO Chuyang, WU Cuisheng, WEI Zhongwei, HE Hui, CAI Peipei, ZHAO Rong. Manufacturing and testing verification for high temperature composite rudder[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1312-1320. |
[6] | JIANG Tian, XU Jifeng, LIU Weiping, YE Jinrui, JIA Lijie, ZHANG Boming. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 61-66. |
[7] | QING Yan, WU Yiqiang, QIN Zhiyong, YAO Chunhua, WANG Min, LUO Sha. Preparation and performance evaluation of SiO2/poplar wood composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 125-130. DOI: CNKI:11-1801/TB.20110720.1425.038 |
[8] | Evaluation method for technology maturity of composite aircraft structure[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 150-154. |
[9] | GUO Cheng, GUO Shengwu, CHENG Yu, ZHANG Xingong, SHI Dongcai. TENSILE MECHANICAL PROPERTIES AND ITS EVALUATION OF ALUMINIUM ALLOY MATRIX GRADIENT COMPOSITESREINFORCED WITH SiC PARTICLES[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 23-28. |
[10] | YAN Ying, LOU Chang, CHENG Chuan-xian, ZHANG Yi-ning, YANG Xu. MICROMECHANICAL ANALYSIS AND EXPERIMENTAL EVALUATION OF THE PROPERTY OF WOVEN COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 109-113. |
1. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
![]() | |
2. |
陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 .
![]() | |
3. |
董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
![]() | |
4. |
席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
![]() | |
5. |
钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 .
![]() | |
6. |
翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
![]() | |
7. |
何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
![]() | |
8. |
姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
![]() | |
9. |
石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
![]() | |
10. |
刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .
![]() |