CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630. DOI: 10.13801/j.cnki.fhclxb.20211025.001
Citation: CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630. DOI: 10.13801/j.cnki.fhclxb.20211025.001

Preparation of superwetting γ-aminopropyltriethoxysilane-TiO2 coated fabric and its water purification performances

More Information
  • Received Date: August 12, 2021
  • Revised Date: October 03, 2021
  • Accepted Date: October 15, 2021
  • Available Online: October 24, 2021
  • Anisotropic wettable materials have become a hot spot in oil-water separation research because of their apparently opposite absorption characteristics for oil and water. In this paper, γ-aminopropyltriethoxysilane (APTES) and hydrophilic nano TiO2 were mixed and applied to the fabric. APTES-TiO2 coated superhydrophilic underwater superoleophobic fabric (APTES-TiO2@fabric) was obtained after hydrolyzing and crosslinking. The modified fabric was characterized by contact angle measuring instrument, FTIR, XPS, FESEM, XRD and EDS. The results show that APTES-TiO2 is successfully coated on the surface of the fabric, which has a water contact angle of 0° in air and an oil contact angle of greater than 152° for the selected oil in water. In the oil-water separation test, the separation efficiency of APTES-TiO2@fabric for the several light oils is above 99%, and it still has a good separation efficiency after 5 separation cycles and soaked in acid-base salt solution. In addition, the fabric also has excellent photocatalytic performance. Under 12 h of ultraviolet irradiation, it can degrade the methylene blue in water and adsorb to itself, achieving the effect of water purification and self-cleaning. The results show that APTES-TiO2@fabric has good oil-water separation and photocatalytic performance, which can be used as a reference for water purification in practical applications.
  • [1]
    QIN G J, ZHANG P, HOU X Q, et al. Risk assessment for oil leakage under the common threat of multiple natural hazards[J]. Environmental Science and Pollution Research,2020,27(14):16507-16520. DOI: 10.1007/s11356-020-08184-7
    [2]
    魏倩, 林韶晖, 冯献社, 等. 超疏水石墨烯/甲醛-三聚氰胺-亚硫酸氢钠共聚物海绵的制备及其在油水分离中的应用[J]. 复合材料学报, 2019, 36(7):1728-1736. DOI: 10.13801/j.cnki.fhclxb.20190109.002

    WEI Qian, LIN Shaohui, FENG Xianshe, et al. Synthesis of superhydrophobic graphene/formaldehyde-melamine-sodium bisulfite copolymer sponge and its application as absorbent for oil water separation[J]. Acta Materiae Compositae Sinica,2019,36(7):1728-1736(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20190109.002
    [3]
    LIU X, MENG R L, XING Q G, et al. Assessing oil spill risk in the Chinese Bohai sea: A case study for both ship and platform related oil spills[J]. Ocean & Coastal Management,2015,108:140-146. DOI: 10.1016/j.ocecoaman.2014.08.016
    [4]
    DE OLIVEIRA SOARES M, TEIXEIRA C E P, BEZERRA L E A, et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster[J]. Marine Policy,2020,115:103879. DOI: 10.1016/j.marpol.2020.103879
    [5]
    NOROUZI N, FANI M, ZIARANI Z K. The fall of oil age: A scenario planning approach over the last peak oil of human history by 2040[J]. Journal of Petroleum Science and Engineering,2020,188:106827. DOI: 10.1016/j.petrol.2019.106827
    [6]
    LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review[J]. Progress in Polymer Science,2018,87:1-33. DOI: 10.1016/j.progpolymsci.2018.06.009
    [7]
    XUE Z X, CAO Y Z, LIU N, et al. Special wettable materials for oil/water separation[J]. Journal of Materials Che-mistry A,2014,2(8):2445-2460. DOI: 10.1039/C3TA13397D
    [8]
    FENG L, ZHANG Z Y, MAI Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie,2004,116(15):2046-2048. DOI: 10.1002/ange.200353381
    [9]
    WEI Y, QI H, GONG X, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces,2018,5(23):1800576. DOI: 10.1002/admi.201800576
    [10]
    QIU L, SUN Y H, GUO Z G. Designing novel superwetting surfaces for high-efficiency oil-water separation: Design principles, opportunities, trends and challenges[J]. Jour-nal of Materials Chemistry A,2020,8(33):16831-16853. DOI: 10.1039/D0TA02997A
    [11]
    ZENG Q T, MA P M, LAI D H, et al. Superhydrophobic reduced graphene oxide@poly(lactic acid) foam with electrothermal effect for fast separation of viscous crude oil[J]. Journal of Materials Science,2021,56(19):11266-11277. DOI: 10.1007/s10853-021-06029-3
    [12]
    SI Y F, DONG Z C, JIANG L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science,2018,4(9):1102-1112. DOI: 10.1021/acscentsci.8b00504
    [13]
    SU M J, LIU Y, LI S H, et al. A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation[J]. Chemical Engineering Journal,2019,361:364-372. DOI: 10.1016/j.cej.2018.12.082
    [14]
    LI J, YAN L, LI W J, et al. Superhydrophilic-underwater superoleophobic ZnO-based coated mesh for highly efficient oil and water separation[J]. Materials Letters,2015,153:62-65. DOI: 10.1016/j.matlet.2015.03.146
    [15]
    LIU Y, YIN J Y, FU Y B, et al. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh[J]. Chemical Engineering Journal,2020,382:122925. DOI: 10.1016/j.cej.2019.122925
    [16]
    GE B, HAN L, LIANG X, et al. Fabrication of superhydrophobic Cu-BiOBr surface for oil/water separation and water soluble pollutants degradation[J]. Applied Surface Science,2018,462:583-589. DOI: 10.1016/j.apsusc.2018.08.174
    [17]
    BAIG U, FAIZAN M, SAJID M. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review[J]. Advances in Colloid and Interface Science,2020,285:102276. DOI: 10.1016/j.cis.2020.102276
    [18]
    BAIG U, MATIN A, GONDAL M, et al. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants[J]. Journal of Cleaner Production,2019,208:904-915. DOI: 10.1016/j.jclepro.2018.10.079
    [19]
    WANG Z X, HAN M C, ZHANG J, et al. Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation[J]. Journal of Membrane Science,2020,593:117383. DOI: 10.1016/j.memsci.2019.117383
    [20]
    BET-MOUSHOUL E, MANSOURPANAH Y, FARHADI K, et al. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal,2016,283:29-46. DOI: 10.1016/j.cej.2015.06.124
    [21]
    LI M, BIAN C, YANG G X, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion[J]. Chemical Engineering Journal,2019,368:350-358. DOI: 10.1016/j.cej.2019.02.176
    [22]
    YANG J, KWON G J, HWANG K, et al. Cellulose-chitosan antibacterial composite films prepared from LiBr solution[J]. Polymers,2018,10(10):1058. DOI: 10.3390/polym10101058
    [23]
    EL-SAYED N S, EL-SAKHAWY M, BRUN N, et al. New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation[J]. Carbohydrate polymers,2018,199:193-204. DOI: 10.1016/j.carbpol.2018.07.004
    [24]
    LI Z Q, DONG Y C, LI B, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: Conditions optimization and stain decomposition pathway[J]. Materials & Design,2018,140:366-375. DOI: 10.1016/j.matdes.2017.12.014
    [25]
    林细标. 工业废水废气治理技术[J]. 环境与发展, 2019, 31(4):44, 46.

    LIN Xibiao. Treatment technology in industrial wastewater waste gas[J]. Environment and Development,2019,31(4):44, 46(in Chinese).
    [26]
    KONG A Q, JI Y H, MA H H, et al. A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution[J]. Journal of Cleaner Production,2018,192:801-808. DOI: 10.1016/j.jclepro.2018.04.271
    [27]
    JIANG X L, PENG Z T, GAO Y R, et al. Preparation and visible-light photocatalytic activity of Ag-loaded TiO2@Y2O3 hollow microspheres with double-shell structure[J]. Powder Technology,2021,377:621-631. DOI: 10.1016/j.powtec.2020.09.030
    [28]
    XIE Z W, LIN J C, XU M Y, et al. Novel Fe3O4 nanoparticle/β-cyclodextrin-based polymer composites for the removal of methylene blue from water[J]. Industrial & Engineering Chemistry Research,2020,59(26):12270-12281. DOI: 10.1021/acs.iecr.0c01115
    [29]
    LI F R, KONG W T, BHUSHAN B, et al. Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification[J]. Journal of Colloid and Interface Science,2019,557:395-407. DOI: 10.1016/j.jcis.2019.09.042
  • Related Articles

    [1]ZHANG Zhengwei, LI Hui, LI Zelin, SUN Guowei, CUI Hongbo, DENG Yichen. Finite element modeling analysis and verification of fiber-reinforced origami sandwich plates with shear-hardening materials under high velocity impact[J]. Acta Materiae Compositae Sinica.
    [2]TAN Huancheng, XU Shanying, HUANG Xiong, GUAN Yupu, CHEN Wei. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139-1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002
    [3]WEN Quan, GUO Dongming, GAO Hang, ZHAO Dong. Comprehensive evaluation method for carbon/epoxy composite hole-making damages[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 265-272. DOI: 10.13801/j.cnki.fhclxb.20151014.001
    [4]LI Jia, SHI Fenghui, LYU Jing, ZHANG Baoyan. Characterization and evaluation of electric-arc-produced graphene material[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1658-1662. DOI: 10.13801/j.cnki.fhclxb.20150323.001
    [5]LUO Chuyang, WU Cuisheng, WEI Zhongwei, HE Hui, CAI Peipei, ZHAO Rong. Manufacturing and testing verification for high temperature composite rudder[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1312-1320.
    [6]JIANG Tian, XU Jifeng, LIU Weiping, YE Jinrui, JIA Lijie, ZHANG Boming. Simulation and verification of cure-induced deformation by stages for integrated composite structure[J]. Acta Materiae Compositae Sinica, 2013, 30(5): 61-66.
    [7]QING Yan, WU Yiqiang, QIN Zhiyong, YAO Chunhua, WANG Min, LUO Sha. Preparation and performance evaluation of SiO2/poplar wood composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 125-130. DOI: CNKI:11-1801/TB.20110720.1425.038
    [8]Evaluation method for technology maturity of composite aircraft structure[J]. Acta Materiae Compositae Sinica, 2010, 27(3): 150-154.
    [9]GUO Cheng, GUO Shengwu, CHENG Yu, ZHANG Xingong, SHI Dongcai. TENSILE MECHANICAL PROPERTIES AND ITS EVALUATION OF ALUMINIUM ALLOY MATRIX GRADIENT COMPOSITESREINFORCED WITH SiC PARTICLES[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 23-28.
    [10]YAN Ying, LOU Chang, CHENG Chuan-xian, ZHANG Yi-ning, YANG Xu. MICROMECHANICAL ANALYSIS AND EXPERIMENTAL EVALUATION OF THE PROPERTY OF WOVEN COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 2001, 18(2): 109-113.
  • Cited by

    Periodical cited type(10)

    1. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
    2. 陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 . 本站查看
    3. 董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
    4. 席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
    5. 钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 . 本站查看
    6. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
    7. 何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
    8. 姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
    9. 石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
    10. 刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1042) PDF downloads (35) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return