Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
CAO Zhaolin, YAO Yucheng, TAN Jihuai, et al. Preparation and application of epoxy resin derived from protocatechuic acid[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006
Citation: CAO Zhaolin, YAO Yucheng, TAN Jihuai, et al. Preparation and application of epoxy resin derived from protocatechuic acid[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231. doi: 10.13801/j.cnki.fhclxb.20211018.006

Preparation and application of epoxy resin derived from protocatechuic acid

doi: 10.13801/j.cnki.fhclxb.20211018.006
  • Received Date: 2021-07-06
  • Accepted Date: 2021-10-10
  • Rev Recd Date: 2021-09-30
  • Available Online: 2021-10-19
  • Publish Date: 2022-07-30
  • The brittleness of epoxy resin needs toughening to meet the application requirements. Protocatechuic acid epoxy resin (PA-EP) was synthesized from protocatechuic acid (PA) and epichlorohydrin via two-step reaction, and used as special epoxy resin for the modification of bisphenol A epoxy resin. The structure and properties of the PA-EP were characterized by fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance spectroscopy (1HNMR), potentiometric titration and viscosity tester. FTIR, 1HNMR and viscosity analyses indicate that the target product are synthesized with epoxy value of 0.73 eq/100 g and viscosity of 43.2 Pa·s at 25℃. The mechanical properties of PA-EP/E-51 thermosets are better than others when the mass ratio of PA-EP to E-51 is 10%. The tensile strength, flexural strength and impact strength are increased by 37.4%, 17.2% and 82.9%, respectively. The scanning electron microscope (SEM) images of impact section show that PA-EP/E-51 thermosets exhibit ductile fracture characteristics. Dynamic mechanical analysis (DMA) and thermogravimetry (TG) results indicate that the glass transition temperature (Tg) increases from 116.0℃ (neat E-51) to 137.3℃ with 12.5% of PA-EP/E-51. The weight loss 10% and the maximum decomposition rate temperature are decreased slightly while the residue content of 800℃ increases from 5.9% (neat E-51) to 9.8% (12.5% PA-EP/E-51).

     

  • loading
  • [1]
    LIU X F, LIU B W, LUO X, et al. A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin[J]. Chemical Engineering Journal,2020,380:122471.
    [2]
    FENG A L, HOU T Q, JIA Z R, et al. Preparation and characterization of epoxy resin filled with Ti3C2Tx MXene nanosheets with excellent electric conductiity[J]. Nanomaterials,2020,10(1):162. doi: 10.3390/nano10010162
    [3]
    AUVERGNE R, CAILLOL S, DAVID G, et al. Biobased thermosetting epoxy: Present and future[J]. Chemical Reviews,2014,114(2):1082-1115. doi: 10.1021/cr3001274
    [4]
    YOURDKHANI M, HUBERT P. A systematic study on dispersion stability of carbon nanotube-modified epoxy resins[J]. Carbon,2015,81:251-259. doi: 10.1016/j.carbon.2014.09.056
    [5]
    HAMERTON I, MCNAMARA L T, HOWLIN B J, et al. Toughening mechanisms in aromatic polybenzoxazines using thermoplastic oligomers and telechelics[J]. Macromolecules,2014,47(6):1946-1958.
    [6]
    VIJAYAN P P, HARIKRISHNAN M G, PUGLIA D, et al. Solvent uptake of liquid rubber toughened epoxy/clay nanocomposites[J]. Advances in Polymer Technology,2016,35(1):1-7.
    [7]
    LI S P, WU Q S, ZHU H J, et al. Impact resistance enhancement by adding core-shell particle to epoxy resin modified with hyperbranched polymer[J]. Polymers,2017,9(12):684. doi: 10.3390/polym9120684
    [8]
    ZHENG J Y, ZHANG X W, CAO J, et al. Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane[J]. Journal of Applied Polymer Science,2020,138(14):50138.
    [9]
    MA S Q, LIU X Q, JIANG Y H, et al. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers[J]. Green Chemistry,2013,15:245-254. doi: 10.1039/C2GC36715G
    [10]
    TAKASHI T, KOHEI T, HIROSHI U. Bio-based epoxy resins from epoxidized plant oils and their shape memory behaviors[J]. Journal of the American Oil Chemists’ Society,2016,93(12):1663-1669. doi: 10.1007/s11746-016-2907-5
    [11]
    XIN J N, LI M, LI R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering,2016,4:2754-2761.
    [12]
    胡芳芳. 柔韧型桐油基环氧热固单体的制备及其结构与性能的调控[D]. 北京: 中国林业科学研究院, 2019.

    HU Fangfang. Preparation and regulation of structure and properties of flexible tung-oil-based epoxy thermosetting monomers[D]. Beijing: Chinese Academy of Forestry, 2019(in Chinese).
    [13]
    NIKAFSHAR S, ZABIHI O, HAMIDI S, et al. A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA[J]. RSC Advances,2017,7(14):8694-8701. doi: 10.1039/C6RA27283E
    [14]
    NILOY B, DUA T K, RITU K, et al. Protocatechuic acid, a phenolic from sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation[J]. Frontiers in Pharmacology,2017,8:251. doi: 10.3389/fphar.2017.00251
    [15]
    YOSWARIS S, PATCHAREEWAN P, CHATTIPAKORN S C, et al. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine[J]. Evidence-Based Complementray and Alternative Medicine,2015,2015:593902.
    [16]
    CHEN X R, HOU J R, GU Q, et al. A non-bisphenol-A epoxy resin with high Tg derived from the bio-based protocatechuic acid: Synthesis and properties[J]. Polymer,2020,195:122443. doi: 10.1016/j.polymer.2020.122443
    [17]
    TAO Y Q, FANG L X, DAI M L, et al. Sustainable alternative to bisphenol A epoxy resin: High-performance recyclable epoxy vitrimers derived from protocatechuic acid[J]. Polymer Chemistry,2020,11:4500. doi: 10.1039/D0PY00545B
    [18]
    中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [19]
    中国国家标准化管理委员会. 塑料 环氧化合物 环氧当量的测定: GB/T 4612—2008 [S]. 北京: 中国标准出版社, 2008

    Standardization Administration of the People’s Republic of China. Plastics-epoxy compounds determination of epoxy equivalent: GB/T 4612—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [20]
    中国国家标准化管理委员会. 塑料 环氧树脂 黏度测定方法: GB/T 22314—2008 [S]. 北京: 中国标准出版社, 2008

    Standardization Administration of the People’s Republic of China. Plastics-epoxide resins-determination of viscosity: GB/T 22314—2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [21]
    JIANG H, SUN L, ZHANG Y R, et al. Novel biobased epoxy resin thermosets derived from eugenol and vanillin[J]. Polymer Degradation and Stability,2019,160:45-52. doi: 10.1016/j.polymdegradstab.2018.12.007
    [22]
    李庆. 反应诱导相分离增韧双酚A环氧树脂交联网络的制备及性能研究[D]. 北京: 北京化工大学, 2019.

    LI Qing. Preparation and properties of reaction-induced phase separation toughtened bisphenol A epoxy resin crosslinking network[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).
    [23]
    JIN X L, LI W Z, LIU Y Y, et al. Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105727. doi: 10.1016/j.compositesa.2019.105727
    [24]
    HU D, ZHENG S X. Reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer[J]. European Polymer Journal,2009,45(12):3326-3338.
    [25]
    WANG S, MA S Q, XU C X, et al. Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties[J]. Macromolecules,2017,50(5):1892-1901. doi: 10.1021/acs.macromol.7b00097
    [26]
    SHANG L, ZHANG X P, ZHANG M J, et al. A highly active bio-based epoxy resin with multi-functional group: Synthesis, characterization, curing and properties[J]. Journal of Materials Science,2018,53:5402-5417. doi: 10.1007/s10853-017-1797-8
    [27]
    王一鸣. 基于刚性单体的生物基环氧复合材料的制备及其性能研究[D]. 石家庄: 石家庄铁道大学, 2020.

    WANG Y M. Preparation and properties of bio-based epoxy composites based on rigid monomers[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020(in Chinese).
    [28]
    尚垒. 基于白藜芦醇的生物基环氧树脂合成、固化及其碳纤维复合材料性能研究[D]. 长春: 长春工业大学, 2018.

    SHANG Lei. Synthesis, curing and properties of bio-epoxy resin based on resveratrol and carbon fiber composites[D]. Changchun: Changchun University of Technology, 2018(in Chinese).
    [29]
    ZHANG T T, TAN J H, HAN X, et al. Novel epoxy-ended hyperbranched polyether derived from xylitol as sustainable tougheners for epoxy resin[J]. Polymer Testing,2021,94:107053. doi: 10.1016/j.polymertesting.2021.107053
    [30]
    YU M, FU Q H, ZHANG T T, et al. Properties and curing kinetics of epoxy resin toughened by dimer acid diglycidyl ester[J]. Thermochimica Acta,2021,699:178910. doi: 10.1016/j.tca.2021.178910
    [31]
    ZHAO Q, WANG X Y, HU Y H. The application of highly soluble amine-terminated aromatic polyimides with pendent tert-butyl groups as a tougher for epoxy resin[J]. Chinese Journal of Polymer Science,2015,33(10):1359-1372. doi: 10.1007/s10118-015-1685-0
    [32]
    LIU T, NIE Y, CHEN R, et al. Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms[J]. Journal of Materials Chemistry A,2014,3(3):1188-1198.
    [33]
    TOMUTA A, FERRANDO F, SERRA A, et al. New aromatic–aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets[J]. Reactive & Functional Polymers,2012,72(9):556-563.
    [34]
    JIN Q F, MISASI J M, WIGGINS J S, et al. Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier[J]. Polymer,2015,73:174-182. doi: 10.1016/j.polymer.2015.07.031
    [35]
    FEI X M, TANG Y Y, WEI W, et al. One-pot synthesis of tetramethyl biphenyl backboned hyperbranched epoxy resin as an efficient toughening modifier for two epoxy curing systems[J]. Polymer Bulletin,2018,75:4571-4586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1017) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return