Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3356-3368. doi: 10.13801/j.cnki.fhclxb.20210929.002
Citation: CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3356-3368. doi: 10.13801/j.cnki.fhclxb.20210929.002

Preparation and property optimization of road basic energy-absorbing materials based on balanced control

doi: 10.13801/j.cnki.fhclxb.20210929.002
  • Received Date: 2021-07-07
  • Accepted Date: 2021-09-22
  • Rev Recd Date: 2021-09-13
  • Available Online: 2021-09-30
  • Publish Date: 2022-07-30
  • The purpose is to further develop the new application of energy-absorbing materials in the field of road. A new type of road energy-absorbing material with excellent mechanical properties, energy absorbing property and cushion property was prepared. The suitable curing time was determined. The mechanical properties, energy absorption characteristics and cushion effect of different types of road energy-absorbing materials were clarified. On this basis, the comprehensive property evaluation system of road energy-absorbing materials based on multi index decision-making was established. Type II elastomeric polymer (EP-Ⅱ) was used as the basic energy-absorbing material. The optimum scheme of composition ratio of road energy-absorbing materials was recommended. It lays a solid foundation for the further popularization and application of energy-absorbing materials in road engineering. The results show that both polyvinyl alcohol (PVA) fiber and ultra high molecular weight polyethylene (UHMWPE) micropowder can effectively improve the mechanical properties and energy absorption properties of Type Ⅱ elastomeric polymer, but the effect of the latter is more significant; Both of them can enhance the performance of basic energy absorbing materials. The tensile properties, tearing properties and energy absorption properties are improved by 127.4%-129.11%, 34.04% and 101.65% respectively; Considering the working properties and economic benefits, the optimum scheme of the recommended road energy-absorbing material is 1.0wt% PVA-3wt% UHMWPE/EP-Ⅱ. The corresponding working property indicators are: tensile strength 14.29 MPa, elongation at break 703.36%, tear strength 79.27 N/mm, absorbed conversion energy 1.73 J, and the minimum buffer factor 10.21.

     

  • loading
  • [1]
    《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10):1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering research·2020[J]. China Journal of Highway and Transport,2020,33(10):1-66(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.10.001
    [2]
    CUI P, WU S, XU H, et al. Silicone resin polymer used in preventive maintenance of asphalt mixture based on fog seal[J]. Polymers,2019,11:1814. doi: 10.3390/polym11111814
    [3]
    冯德成, 王东升, 易军艳, 等. 梯度功能复合路面设计原理与实现方法[J]. 科学通报, 2020, 65(30):3270-3286. doi: 10.1360/TB-2020-0200

    FENG Decheng, WANG Dongsheng, YI Junyan, et al. Designation principle and method for functionally graded composite pavement[J]. Chinese Science Bulletin,2020,65(30):3270-3286(in Chinese). doi: 10.1360/TB-2020-0200
    [4]
    陈谦, 王朝辉, 傅豪, 等. 基于性能演变的水性环氧沥青开普封层施工方法优化[J]. 中国公路学报, 2021, 34(7):236-245. doi: 10.3969/j.issn.1001-7372.2021.07.020

    CHEN Qian, WANG Chaohui, FU Hao, et al. Optimization of construction method of waterborne epoxy asphalt cape seal based on performance evolution[J]. China Journal of Highway and Transport,2021,34(7):236-245(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.020
    [5]
    KOKS E, ROZENBERG J, ZORN C, et al. A global multi-hazard risk analysis of road and railway infrastructure assets[J]. Nature Communications,2019,10:2677. doi: 10.1038/s41467-019-10442-3
    [6]
    LUO Y, ZHANG K, XIE X, et al. Performance evaluation and material optimization of micro-surfacing based on cracking and rutting resistance[J]. Construction and Building Materials,2019,206:193-200. doi: 10.1016/j.conbuildmat.2019.02.066
    [7]
    GU X, ZHANG X, LV J, et al. Laboratory performance evaluation of reinforced basalt fiber in sealing asphalt chips[J]. Journal of Testing and Evaluation,2018,46(3):1269-1279.
    [8]
    CAO C, MUKHERJEE S, HOWE J, et al. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers[J]. Science Advances,2018,4(4):eaao7202. doi: 10.1126/sciadv.aao7202
    [9]
    MA L, ZHU Y, WANG M, et al. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface[J]. Composites Science and Technology,2019,51(170):148-156.
    [10]
    CHIANG T, LIU H, TSAI L, et al. Improvement of the mechanical property and thermal stability of polypropylene/recycled rubber composite by chemical modification and physical blending[J]. Scientific Reports,2020,10:2432. doi: 10.1038/s41598-020-59191-0
    [11]
    LIU Q, NIAN G, YANG C, et al. Bonding dissimilar polymer networks in various manufacturing processes[J]. Nature Communications,2018,9:846. doi: 10.1038/s41467-018-03269-x
    [12]
    ZAPICO G, OHTAKE N, AKASAKA H, et al. Epoxy toughening through high pressure and shear rate preprocessing[J]. Scientific Reports,2019,9:17343. doi: 10.1038/s41598-019-53881-0
    [13]
    GHIDINI T. Materials for space exploration and settlement[J]. Nature Materials,2018,17:846-850. doi: 10.1038/s41563-018-0184-4
    [14]
    ZHOU Y, LIU Q, CHEN F, et al. Improving breakdown strength and energy storage efficiency of poly (vinylidene fluoride-co-chlorotrifluoroethylene) and polyurea blend films by double layer structure design[J]. Polymer Testing,2020,81:106261. doi: 10.1016/j.polymertesting.2019.106261
    [15]
    顾善群, 刘燕峰, 李军, 等. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8):110-117. doi: 10.11868/j.issn.1001-4381.2018.000501

    GU Shanqun, LIU Yanfeng, LI Jun, et al. High speed impact properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering,2019,47(8):110-117(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000501
    [16]
    KWAN M, BRACCINI M, LANE M, et al. Frequency-tunable toughening in a polymer-metal-ceramic stack using an interfacial molecular nanolayer[J]. Nature Communications,2018,9:5249. doi: 10.1038/s41467-018-07614-y
    [17]
    LIBONATI F, VELLWOCK A, IELMINI F, et al. Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites[J]. Scientific Reports,2019,9:3142. doi: 10.1038/s41598-019-39030-7
    [18]
    ZHANG Y, XUE Z, LIN Z, et al. Testing the explosion resistance and energy absorption of a polyurethane-foamed aluminum composite structure[J]. Advances in Civil Engineering,2018,2018:4186943.
    [19]
    梁龙强, 黄微波, 武迪, 等. 聚氨酯-橡胶复合阻尼材料减振优化设计[J]. 工程科学与技术, 2020, 1:184-190.

    LIANG Longqiang, HUANG Weibo, WU Di, et al. Optimization design for vibration reduction of polyurethane-rubber composite damping material[J]. Advanced Engineering Sciences,2020,1:184-190(in Chinese).
    [20]
    陈艺顺, 王波, 周健南, 等. 冲击载荷作用下蒸压加气混凝土动态力学性能研究[J]. 振动与冲击, 2019, 38(18):201-206.

    CHEN Yishun, WANG Bo, ZHOU Jiannan, et al. Dynamic mechanical properties of AACs under impact loading[J]. Journal of Vibration and Shock,2019,38(18):201-206(in Chinese).
    [21]
    LI H, ATTARD T, ZHOU H, et al. Integrating energy transferability into the connection-detail of coastal bridges using reinforced interfacial epoxy-polyurea reaction matrix composite[J]. Composite Structures,2019,216:89-103. doi: 10.1016/j.compstruct.2019.02.094
    [22]
    杨璐璐, 牛永平, 杜三明, 等. 增韧环氧树脂的研究进展[J]. 热固性树脂, 2021, 36(1):55-60.

    YANG Lulu, NIU Yongping, DU Sanming, et al. Review on toughening technology of epoxy resin[J]. Thermosetting Resin,2021,36(1):55-60(in Chinese).
    [23]
    DEHGHANI A, ASLANI F. The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites[J]. Construction and Building Materials,2020,252:119061. doi: 10.1016/j.conbuildmat.2020.119061
    [24]
    SON M, KIM G, KIM H, et al. Effects of the strain rate and fiber blending ratio on the tensile behavior of hooked steel fiber and polyvinyl alcohol fiber hybrid reinforced cementitious composites[J]. Cement and Concrete Composites,2020,106:103482. doi: 10.1016/j.cemconcomp.2019.103482
    [25]
    CHRISTAKOPOULOS F, TROISI E, SOLOGUBENKO A, et al. Melting kinetics, ultra-drawability and micro-structure of nascent ultra-high molecular weight polyethylene powder[J]. Polymer,2021,222:123633. doi: 10.1016/j.polymer.2021.123633
    [26]
    张文阳, 吴正文, 王新威. 超高分子量聚乙烯树脂颗粒形态与结构性能的关系[J]. 高分子材料科学与工程, 2020, 36(12):69-75.

    ZHANG Wenyang, WU Zhengwen, WANG Xinwei. Relationship between particle morphology and structure, properties of ultra-high molecular weight polyethylene resin[J]. Polymer Materials Science & Engineering,2020,36(12):69-75(in Chinese).
    [27]
    中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test method for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic-determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29]
    ISO. Plastics—Determination of charpy impact properties—Part Non-instrumented impact test: ISO 179-1—2010[S]. London: British Standards Institution, 2010.
    [30]
    中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Testing method of static compression for for packaging cushioning materials: GB/T 8168—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31]
    JOHNSTON R, KAZANC Z. Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression[J]. Additive Manufacturing,2021,38:101783. doi: 10.1016/j.addma.2020.101783
    [32]
    CHEN Q, WANG S, WANG C, et al. Modified waterborne epoxy as a cold pavement binder: Preparation and long-term working properties[J]. Journal of Materials in Civil Engineering,2021,33(5):04021079. doi: 10.1061/(ASCE)MT.1943-5533.0003707
    [33]
    谢磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3094-3108.

    XIE Lei, LI Qinghua, XU Shilang. Effect of fiber content on dynamic compressive properties of polyvinyl alcohol fiber reinforced cement based composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3094-3108(in Chinese).
    [34]
    HAMEDI G, SHAMAMI K, PAKENARI M. Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt[J]. Construction and Building Materials,2020,258:119729. doi: 10.1016/j.conbuildmat.2020.119729
    [35]
    CHEN Q, WANG C, WEN P, et al. Comprehensive performance evaluation of low-carbon modified asphalt based on efficacy coefficient method[J]. Journal of Cleaner Production,2018,203:633-644. doi: 10.1016/j.jclepro.2018.08.316
    [36]
    MA M, CHEN Q, WANG C, et al. High-performance organosilicon-refractory bauxite: Coating and fundamental properties[J]. Construction and Building Materials,2019,207:563-571. doi: 10.1016/j.conbuildmat.2019.02.137
    [37]
    王济民, 蔡颖. 对功效系数法中标准值确定方法的研究[J]. 财务与会计, 2016, 12:26-27. doi: 10.3969/j.issn.1003-286X.2016.18.015

    WANG Jimin, CAI Ying. Study on the determination method of standard value in efficacy coefficient method[J]. Finance and Accounting,2016,12:26-27(in Chinese). doi: 10.3969/j.issn.1003-286X.2016.18.015
    [38]
    HU M, GUO N, WANG L. Preparation and assessment of paraffin/SiO2 composite phase change material based on the efficacy coefficient method[J]. Heat and Mass Transfer,2020,56(6):1921-1929. doi: 10.1007/s00231-020-02830-z
    [39]
    陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.

    CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (700) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return