Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3212-3223. doi: 10.13801/j.cnki.fhclxb.20210911.001
Citation: XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3212-3223. doi: 10.13801/j.cnki.fhclxb.20210911.001

Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants

doi: 10.13801/j.cnki.fhclxb.20210911.001
  • Received Date: 2021-07-06
  • Accepted Date: 2021-08-27
  • Rev Recd Date: 2021-08-16
  • Available Online: 2021-09-13
  • Publish Date: 2022-07-30
  • The main reason for the aseptic loosening of the implant is the fretting wear between the implant and the bone tissue. A carbon fiber (CF) reinforced polyetheretherketone (PEEK) composite material was prepared by a layered method. Under simulated body temperature of 37℃ and simulated body fluid (SBF) lubrication conditions, the basic mechanical properties and the fretting tribological properties of the section of CF/PEEK composites were explored. By changing the normal load and displacement amplitude, the frictional force(Ft)-displacement (D) curve, the fretting operating condition diagram and the friction coefficient curve were established. And the wear mechanism of the CF/PEEK composite material was explored through a three-dimensional white light interferometer and a scanning electron microscope (SEM). The results show that with the decrease of the normal load and the increase of the displacement amplitude, the fretting changes from partial slip regime and mixed regime to slip regime. The overall friction coefficient curve is relatively stable. The friction coefficient gradually decreases with the increase of normal load and increases with the rise of displacement amplitude. The wear volume increases with load and displacement amplitude increases. In addition, CF/PEEK composites have better fretting properties, and the main wear mechanisms are abrasive wear and fatigue wear. The analysis of the tribological characteristics of composite materials provides a specific theoretical basis for CF/PEEK composite materials to replace metal implants.

     

  • loading
  • [1]
    武太勇, 付海军, 李健, 等. 血液源性原发脊柱肿瘤诊断及治疗的研究进展[J]. 现代肿瘤医学, 2021, 29(13):2350-2354. doi: 10.3969/j.issn.1672-4992.2021.13.034

    WU Taiyong, FU Haijun, LI Jian, et al. Research progress in diagnosis and treatment of hematogenous primary spinal tumors[J]. Modern Oncology,2021,29(13):2350-2354(in Chinese). doi: 10.3969/j.issn.1672-4992.2021.13.034
    [2]
    姜屿. 微型钛板内固定与BOLD加压螺钉手术在足部骨折患者治疗中的应用分析[J]. 中外医学研究, 2020, 18(30):117-118.

    JIANG Yu. Analysis of the application of micro-titanium plate internal fixation and BOLD compression screw surgery in the treatment of patients with foot fractures[J]. Chinese and Foreign Medical Research,2020,18(30):117-118(in Chinese).
    [3]
    AKKAN C K, HAMMADEH E M, MAY A, et al. Surface topography and wetting modifications of PEEK for implant applications[J]. Lasers in Medical Science,2014,29(5):1633-1639. doi: 10.1007/s10103-014-1567-7
    [4]
    MENG X C, ZHANG W, YUAN Z G, et al. A partial hemi-resurfacing preliminary study of a novel magnetic resonance imaging compatible polyetheretherketone mini-prosthesis for focal osteochondral defects[J]. Journal of Orthopaedic Translation,2021,26:67-73.
    [5]
    ZHU J J, XIE F, DWYER-JOYCE R S. PEEK composites as self-lubricating bush materials for articulating revolute pin joints[J]. Polymers,2020,12(3):665. doi: 10.3390/polym12030665
    [6]
    孙会娟. 光诱导自引发接枝聚合PEEK植入体研究进展[J]. 工程塑料应用, 2021, 49(4):153-156. doi: 10.3969/j.issn.1001-3539.2021.04.030

    SUN Huijuan. Progress in PEEK implants by photoinduced self-initiated graft polymerization[J]. Engineering Plastics Application,2021,49(4):153-156(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.04.030
    [7]
    潘月秀, 解锡明, 吴宁, 等. 碳纤维束间的摩擦磨损特性[J]. 复合材料学报, 2019, 36(8):1838-1846.

    PAN Yuexiu, XIE Ximing, WU Ning, et al. Frictional and worn behavior of inter-carbon fiber tows[J]. Acta Materiae Compositae Sinica,2019,36(8):1838-1846(in Chinese).
    [8]
    武扬, 李英. 碳纤维加强型聚醚醚酮的制备探索[J]. 全科口腔医学电子杂志, 2016, 3(15):5-8.

    WU Yang, LI Ying. The compression molding of CF-PEEK composite material[J]. General Journal of Stomatology,2016,3(15):5-8(in Chinese).
    [9]
    赵荻, 黄文旵. 骨修复用生物玻璃复合材料研究进展[J]. 功能材料, 2008, 03(39):353-354,357.

    ZHAO Di, HUANG Wenhai. Advance in research on bioactive glass composites for bone repair[J]. Journal of Funcyional Materials,2008,03(39):353-354,357(in Chinese).
    [10]
    FLECK C, EIFLER D. Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys[J]. International Journal of Fatigue,2010,32(6):929-935. doi: 10.1016/j.ijfatigue.2009.09.009
    [11]
    RONY L, LANCIGU R, HUBERT L. Intraosseous metal implants in orthopedics: A review[J]. Morphologie,2018,102(339):231-242. doi: 10.1016/j.morpho.2018.09.003
    [12]
    JAUCH S Y, COLES L G, NG L V, et al. Low torque levels can initiate a removal of the passivation layer and cause fretting in modular hip stems[J]. Medical Engineering & Physics,2014,36(9):1140-1146.
    [13]
    杨学萍. CCF/PEEK复合材料制备及应用研究进展[J]. 合成纤维, 2021, 50(5):41-51.

    YANG Xueping. Research progress in preparation and application of CCF/PEEK composites[J]. Synthetic Fiber in China,2021,50(5):41-51(in Chinese).
    [14]
    GODARA A, RAABE D, GREEN S. The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone implant applications[J]. Acta Biomaterialia,2007,3(2):209-220. doi: 10.1016/j.actbio.2006.11.005
    [15]
    滕凌虹, 曹伟伟, 朱波, 等. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2):42-53.

    TENG Linghong, CAO Weiwei, ZHU Bo, et al. Research progress in the preparation of fiber reinforced thermoplastic resin prepreg[J]. Journal of Materials Engineering,2021,49(2):42-53(in Chinese).
    [16]
    PAN G L, GUO Q, ZHANG W D, et al. Fretting wear behaviors of nanometer Al2O3 and SiO2 reinforced PEEK composites[J]. Wear,2009,266(11):1208-1215.
    [17]
    WANG Q F, WANG Y X, WANG H L, et al. Comparative study of the effects of nano-sized and micro-sized CF and PTFE on the thermal and tribological properties of PEEK composites[J]. Polymers for Advanced Technologies,2017,29:896-905.
    [18]
    SONG J, LIAO Z H, SHI H Y, et al. Fretting wear study of PEEK-based composites for bio-implant application[J]. Tribology Letters,2017,65(4):1-11.
    [19]
    CHEN B B, WANG J Z, YAN F Y. Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication[J]. Tribology International,2019,52:170-177.
    [20]
    American Society of Testing Materials. Standard test methods for density and specific gravity (relative density) of plastics by displacement: ASTM D792[S]. Pennsylvania, American: American Society of Testing Materials International, 2013.
    [21]
    American Society of Testing Materials. Standard test method for rockwell hardness of plastics and electrical insulating materials: ASTM D785[S]. Pennsylvania, American: American Society of Testing Materials International, 2015.
    [22]
    American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. Pennsylvania, American: American Society of Testing Materials International, 2017.
    [23]
    American Society of Testing Materials. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264[S]. Pennsylvania, American: American Society of Testing Materials International, 2015.
    [24]
    XIAO T, WEN D S, WANG S R, et al. Investigation on fretting wear of Al-Li alloy[J]. Industrial Lubrication and Tribology, 2020, 72(7): 913-921.
    [25]
    张鑫. 人工关节金属假体材料界面间的摩擦腐蚀行为[D]. 徐州: 中国矿业大学, 2017.

    ZHANG Xin. Study on wear and corrosion behaviors of contact interface between metallic materials of artificial hip joint[D]. Xuzhou: China University of Mining and Technology, 2017 (in Chinese).
    [26]
    耿浩. 人工髋关节材料界面间微动腐蚀行为研究[D]. 徐州: 中国矿业大学, 2014.

    GENG Hao. Study on the fretting corrosion behaviors of contact interface between materials of artificial hip joint [D]. Xuzhou: China University of Mining and Technology, 2014 (in Chinese).
    [27]
    高姗姗. 两种牙科合金的微动磨损机理研究[D]. 成都: 四川大学, 2007.

    GAO Shanshan. Research on characteristics of fretting wear of two kinds of dental alloys[D]. Chengdu: Sichuan University, 2007 (in Chinese).
    [28]
    王梦婕, 彭金方, 庄文华, 等. 碳纤维切向微动磨损特性研究[J]. 摩擦学学报, 2019, 39(03): 330-339.

    WANG Mengjie, PENG Jinfang, ZHUANG Wenhua, et al. Fretting wear damage characteristics of carbon fiber[J]. Tribology, 2019, 39(03): 330-339 (in Chinese).
    [29]
    ERINC M, SILLEKENS W H, MANNENS R G T M, et al. Applicability of existing magnesium alloys as biomedical implant materials[A]//The Materials Society Annual Meeting[C]. San Francisco, CA: Cambridge University Press, 2009: 209.
    [30]
    周仲荣. 微动磨损[M]. 北京: 科学出版社, 2002: 78-79; 47-49.

    ZHOU Zhongrong. Fretting wear[M]. Beijng: Science Press, 2002: 78-79; 47-49 (in Chinese).
    [31]
    SHERMA M, RAO M I, BIJWE J. Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber–polyetherimide composites[J]. Tribology International, 2010, 43: 959-964.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (1158) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return