WANG Gaofei, WEI Yang, MIAO Kunting, et al. Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3982-3993. DOI: 10.13801/j.cnki.fhclxb.20210909.012
Citation: WANG Gaofei, WEI Yang, MIAO Kunting, et al. Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3982-3993. DOI: 10.13801/j.cnki.fhclxb.20210909.012

Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns

More Information
  • Received Date: July 28, 2021
  • Revised Date: August 19, 2021
  • Accepted Date: August 22, 2021
  • Available Online: September 08, 2021
  • In order to better directly apply the undisturbed seawater sea-sand coral concrete to marine engineering, this paper performed a monotonous study on 12 carbon fiber reinforced plastics (CFRP)-steel composite tube filled circular seawater sea-sand coral concrete columns and 2 pure steel tube confined seawater sea-sand coral concrete columns. In the axial compression test, the main research parameters are the diameter-thickness ratio of the steel tube and the number of CFRP layers. The test has obtained the axial stress-strain relationship curve of the specimen. The results show that the specimen is in the form of shear failure with obvious shear slip line at the end of the column under axial pressure. The constraint effect of CFRP has no obvious effect on the initial section stiffness of the specimen, but has a significant effect on the stiffness of the specimen in the linear strengthening stage. With the increase of the number of CFRP layers, the ultimate stress and strain of the specimens are significantly increased. With the decrease of the diameter-thickness ratio of the steel tube, the mechanical properties of the specimens increase correspondingly. Combined with the test data, the existing FRP steel composite pipe confined concrete strength calculation model was evaluated.
  • [1]
    李林. 珊瑚混凝土的基本特性研究[D]. 南宁: 广西大学, 2012: 1-8.

    LI L. Research on basic characteristics of coral concrete[D]. Nanning: Guangxi University, 2012: 1-8(in Chinese).
    [2]
    SAFI B, SAIDI M, DAOUI A, et al. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM)[J]. Construction and Building Materials,2015,78:430-438. DOI: 10.1016/j.conbuildmat.2015.01.009
    [3]
    ZHANG Q, XIAO J, ZHANG P, et al. Mechanical behaviour of seawater sea-sand recycled coarse aggregate concrete columns under axial compressive loading[J]. Construction and Building Materials,2019,229:117050. DOI: 10.1016/j.conbuildmat.2019.117050
    [4]
    DA B, YU H, MA H, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials,2016,122:81-89. DOI: 10.1016/j.conbuildmat.2016.06.064
    [5]
    LIU J, OU Z, MO J, et al. Effectiveness of saturated coral aggregate and shrinkage reducing admixture on the autogenous shrinkage of ultrahigh performance concrete[J]. Advances in Materials Science and Engineering,2017(4):1-11.
    [6]
    王磊, 赵艳林, 吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土, 2012(2):99-100. DOI: 10.3969/j.issn.1002-3550.2012.02.031

    WANG L, ZHAO Y L, LV H B. Prospect on the properties and application situation of coral aggregate concrete[J]. Concrete,2012(2):99-100(in Chinese). DOI: 10.3969/j.issn.1002-3550.2012.02.031
    [7]
    余红发, 达波, 麻海燕, 等. 全珊瑚海水混凝土及其梁柱构件的力学性能与耐久性[J]. 建筑材料学报, 2019, 22(6):993-998. DOI: 10.3969/j.issn.1007-9629.2019.06.023

    YU H F, DA B, MA H Y, et al. Mechanical behavior and durability of coral aggregate seawater concrete and its beam-column member[J]. Journal of Building Materials,2019,22(6):993-998(in Chinese). DOI: 10.3969/j.issn.1007-9629.2019.06.023
    [8]
    达波, 余红发, 麻海燕, 等. 全珊瑚海水混凝土单轴受压应力-应变全曲线试验研究[J]. 建筑结构学报, 2017, 38(1):144-151.

    DA B, YU H F, MA H Y, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Materials,2017,38(1):144-151(in Chinese).
    [9]
    HUANG Y, HE X, SUN H, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials,2018,192:330-347. DOI: 10.1016/j.conbuildmat.2018.10.111
    [10]
    王磊, 王国旭, 邓雪莲. 不同掺量碳纤维珊瑚混凝土力学性能试验研究[J]. 中国农村水利水电, 2014(9):148-151. DOI: 10.3969/j.issn.1007-2284.2014.09.038

    WANG L, WANG G X, DENG X L. Research on the mecha-nical properties of different content carbon fiber coral concrete[J]. China Rural Water and Hydropower,2014(9):148-151(in Chinese). DOI: 10.3969/j.issn.1007-2284.2014.09.038
    [11]
    鲁于, 黄一杰, 王海超, 等. 改性海水海砂珊瑚混凝土力学性能试验研究[J]. 混凝土, 2019(4):150-154. DOI: 10.3969/j.issn.1002-3550.2019.04.035

    LU Y, HUANG Y J, WANG H C, et al. Experimental study on the mechanical properties of modified sea water sea sand coral concrete[J]. Concrete,2019(4):150-154(in Chinese). DOI: 10.3969/j.issn.1002-3550.2019.04.035
    [12]
    DONG C X, KWAN A K H, HO J C M. Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets[J]. Engineering Structures,2016,126:365-378. DOI: 10.1016/j.engstruct.2016.07.059
    [13]
    GUO M, HU B, XING F, et al. Characterization of the mecha-nical properties of eco-friendly concrete made with untreated sea-sand and seawater based on statistical analysis[J]. Construction and Building Materials,2020,234:117339. DOI: 10.1016/j.conbuildmat.2019.117339
    [14]
    LI Y L, TENG J G, ZHAO X L, et al. Theoretical model for seawater and sea-sand concrete-filled circular FRP tubular stub columns under axial compression[J]. Engineering Structures,2018,160:71-84. DOI: 10.1016/j.engstruct.2018.01.017
    [15]
    LIANG H J, LI S, LU Y Y, et al. Electrochemical perfor-mance of corroded reinforced concrete columns strengthened with fiber reinforced polymer[J]. Composite Structures,2019,207:576-588. DOI: 10.1016/j.compstruct.2018.09.028
    [16]
    WU Z S, YANG C Q, IWASHITA K, et al. Development of damage-controlled latter cast FRP–RC hybrid girders[J]. Compo-sites Part B: Engineering,2011,42(6):1770-1777. DOI: 10.1016/j.compositesb.2011.01.019
    [17]
    WANG J, FENG P, HAO T, et al. Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes[J]. Construction and Building Materials,2017,147:272-285. DOI: 10.1016/j.conbuildmat.2017.04.169
    [18]
    ZHANG T, NIU D, RONG C. GFRP-confined coral aggre-gate concrete cylinders: The experimental and theoretical analysis[J]. Construction and Building Materials,2019,218:206-213. DOI: 10.1016/j.conbuildmat.2019.05.052
    [19]
    WEI Y, ZHANG X, WU G, et al. Behaviour of concrete confined by both steel spirals and fiber-reinforced polymer under axial load[J]. Composite Structures,2018,192:577-591. DOI: 10.1016/j.compstruct.2018.03.041
    [20]
    郭莹, 刘界鹏, 苗亚军, 等. 圆CFRP-钢复合管约束混凝土短柱轴压试验研究[J]. 工程力学, 2017, 34(6):41-50.

    GUO Y, LIU J P, MIAO Y J, et al. Experimental study on axial behavior of circular CFRP-steel composite tube confined concrete stube columns[J]. Engineering Mechanics,2017,34(6):41-50(in Chinese).
    [21]
    HUANG L, YU T, ZHANG S, et al. FRP-confined concrete-encased cross-shaped steel columns: Concept and behaviour[J]. Engineering Structures,2017,152:348-358. DOI: 10.1016/j.engstruct.2017.09.011
    [22]
    张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Y R, WEI Y, BAI J W, et al. Models for predicting axial compression behavior fiber reinforced polymber-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
    [23]
    LI Y L, ZHAO X L, SINGH R K R, et al. Experimental study on seawater and sea-sand concrete filled GFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,106:390-406. DOI: 10.1016/j.tws.2016.05.014
    [24]
    LI Y L, ZHAO X L, RAMAN S R K, et al. Tests on seawater and sea-sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures,2016,108:163-184. DOI: 10.1016/j.tws.2016.08.016
    [25]
    柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9):3084-3093.

    BAI J W, WEI Y, ZHANG Y R, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3084-3093(in Chinese).
    [26]
    中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. Metallic mater-ials—Tensile testing—Part 1: Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [27]
    中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [28]
    TAO Z, HAN L, ZHUANG J. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering,2007,10(1):37-46. DOI: 10.1260/136943307780150814
    [29]
    PARK J W, HONG Y K, HONG G S, et al. Design formulas of concrete filled circular steel tubes reinforced by carbon fiber reinforced plastic sheets[J]. Procedia Engineering,2011,14:2916-2922. DOI: 10.1016/j.proeng.2011.07.367
    [30]
    LU Y, LI N, LI S. Behavior of FRP-confined concrete-filled steel tube columns[J]. Polymers,2014,6(5):1333-1349. DOI: 10.3390/polym6051333
    [31]
    DING F, LU D, BAI Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures,2018,125:107-118. DOI: 10.1016/j.tws.2018.01.015
    [32]
    WEI Y, BAI J, ZHANG Y, et al. Compressive performance of high-strength seawater and sea-sand concrete-filled circular FRP-steel composite tube columns[J]. Engineering Structures,2021,240:112357. DOI: 10.1016/j.engstruct.2021.112357
  • Related Articles

    [1]SHAO Lingfeng, WEI Yang, WANG Gaofei, ZHANG Yirui, LI Guofen. Axial compression performance of FRP-galvanized corrugated steel tube seawater sea-sand concrete columns[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3272-3284.
    [2]CHEN Yuliang, BAO Erkang, HE Qin, LI Jiacheng, YE Peihuan. Compressive-shear composite mechanical properties of coral seawater sea sand concrete[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2795-2804.
    [3]DAN Yu, ZHANG Chunyu, SHE Haitao, CHEN Hua, QIN Shitao. Experimental study on axial compressive mechanical properties and bearing capacity calculation of RC short columns strengthened with self-compacting recycled concrete-filled steel tubes[J]. Acta Materiae Compositae Sinica.
    [4]WANG Jin, XU Weibing, DU Xiuli, DING Mengjia, CHEN Yanjiang, YAN Xiaoyu, XU Xiaorong. Axial compressive behaviour of precast steel reinforced ECC shell-concrete composite column[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 5083-5097. DOI: 10.13801/j.cnki.fhclxb.20240805.002
    [5]LIU Lei, HE Zhen, WANG Peng, CAI Xinhua, HAN Diyang, LUO Tao. Axial compression behavior of novel concrete-filled circular CFRP-UHPC composite tubular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2390-2404. DOI: 10.13801/j.cnki.fhclxb.20220623.003
    [6]ZHAO Hui, CAO Yugui, WANG Panfeng, ZHAO Lifeng. Mechanical behavior of CFRP confined concrete square column under different strain rates[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4847-4855. DOI: 10.13801/j.cnki.fhclxb.20211012.004
    [7]YANG Junlong, WANG Jizhong, LU Shiwei, ZHANG Lihua, WANG Ziru. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2801-2809. DOI: 10.13801/j.cnki.fhclxb.20210708.004
    [8]BAI Jiawen, WEI Yang, ZHANG Yirui, MIAO Kunting, ZHENG Kaiqi. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093. DOI: 10.13801/j.cnki.fhclxb.20201117.001
    [9]JIAO Chujie, LI Song, CUI Lishi, WANG Zhiren, JIAN Chao. Axial compression behaviour of CFRP confined reactive power concrete filled steel tube stub columns[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 439-448. DOI: 10.13801/j.cnki.fhclxb.20200608.003
    [10]OUYANG Lijun, XU Feng, LU Zhoudao. Axial compressive behavior of basalt fiber reinforced polymer-confined damaged concrete after exposed to elevated temperatures[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2002-2013. DOI: 10.13801/j.cnki.fhclxb.20170926.002
  • Cited by

    Periodical cited type(2)

    1. 颜秀花,房娟,唐兰勤. 磁性纳米ZnFe_2O_4/Ag_3PO_4复合材料的合成及光催化降解性能. 环境科学学报. 2025(01): 135-142 .
    2. 蒋莉萍,张雪乔,钟晓娟,魏于凡,肖利,郭旭晶,羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备. 化工进展. 2025(01): 538-548 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1165) PDF downloads (63) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return