Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001
Citation: WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3131-3143. doi: 10.13801/j.cnki.fhclxb.20210906.001

Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method

doi: 10.13801/j.cnki.fhclxb.20210906.001
  • Received Date: 2021-06-25
  • Accepted Date: 2021-08-16
  • Rev Recd Date: 2021-08-11
  • Available Online: 2021-09-06
  • Publish Date: 2022-07-30
  • The preparation of thermally conductive pads with high vertical thermal conductivity and low compressive stress relaxation is of great significance for improving the vertical heat dissipation capability of current high-power electronic components. In this paper, based on the ice template method, a bottom-up vertically oriented thermal network is designed to achieve high thermal conductivity. First, we use dopamine-modified hydroxylated boron nitride nanosheets and silver nanoparticles (BNNS@PDA/Ag) as hybrid thermally conductive fillers, cellulose nanofibers (Cellulose nanofiber, CNF) are used to prepare composite, and a semiconductor is applied as refrigeration table for the composite’s directional freezing. The frozen samples are freeze-dried to form an aerogel, and then polydimethylsiloxane (PDMS) is vacuum poured into the aerogel to prepare BNNS@PDA/Ag-PDMS thermal pad with high thermal conductivity and low stress relaxation. The results show that the theoretical relaxation time loss decreases first and then increases with the increase of silver nanoparticles (Ag NPs) content. When the aerogel mass fraction reaches 19.7wt%, the theoretical relaxation time of the thermal pad corresponding to 3wt% Ag NPs content reaches 32204 at 20% deformation, the vertical thermal conductivity of thermal pad is up to 3.23 W/(m·K). The ice template method can be used to prepare the vertical packing thermal network with high orientation, which has a good application prospect in the field of thermally conductive pads.

     

  • loading
  • [1]
    吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766.

    WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese).
    [2]
    OUYANG T, CHEN Y P, XIE Y E, et al. Thermal transport in hexagonal boron nitridenanoribbons[J]. Nano-technology,2010,21(24):245701. doi: 10.1088/0957-4484/21/24/245701
    [3]
    BRESNEHAN M S. Synthesis and characterization of hexagonal boron nitride for integration with graphene electronics[D]. Pennsylvania: The Pennsylvania State University, 2013.
    [4]
    XUE B, ZHANG C X, ZENG X L, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks[J]. Composites Communications,2021,24:100650. doi: 10.1016/j.coco.2021.100650
    [5]
    WANG T, OU D H, LIU H H, et al. Thermally conductive boron nitride nanosheet composite paper as a flexible printed circuit board[J]. ACS Applied Nano Mater-ials,2018,1(4):1705-1712. doi: 10.1021/acsanm.8b00160
    [6]
    WU Y J, ZHANG X X, NEGI A, et al. Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites[J]. Polymers,2020,12(2):426. doi: 10.3390/polym12020426
    [7]
    LI R Y, LV X W, YU J, et al. Dielectric, thermally conductive, and heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride[J]. High Performance Polymers,2020,32(10):1181-1190. doi: 10.1177/0954008320938846
    [8]
    CHEN C, XUE Y, LI Z. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. doi: 10.1016/j.cej.2019.03.150
    [9]
    CHEN H Y, VALERIY V G, JIAN Y, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85.
    [10]
    GUO Y Q, PAN L L, YANG X T, et al. Simultaneous improvement of thermal conductivities andelectromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105484. doi: 10.1016/j.compositesa.2019.105484
    [11]
    VU M C, KIM I H, CHOI W K, et al. Highly flexible graphene derivative hybrid film: An outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management[J]. ACS Applied Materials & Interfaces,2020,12(23):26413-26423.
    [12]
    ZENG X L, YE L, YU S H, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale,2015,7(15):6774-6781. doi: 10.1039/C5NR00228A
    [13]
    YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Mater-ials & Interfaces,2019,11(19):17915-17924.
    [14]
    ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3d boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [15]
    JI C, WANG Y, YE Z Q, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials[J]. ACS Applied Materials & Interfaces,2020,12(21):24298-24307.
    [16]
    杜虎, 吴钢, 庞之洋, 等. 基于界面热阻等效模型的超导磁体热输运分析[J]. 低温与超导, 2011, 39(07):25-29. doi: 10.3969/j.issn.1001-7100.2011.07.006

    DU Hu, WU Gang, PANG Zhiyang, et al. Thermal transport analysis of superconducting magnet based on equivalent model of interface thermal resistance[J]. Cryogenics and Superconductivity,2011,39(07):25-29(in Chinese). doi: 10.3969/j.issn.1001-7100.2011.07.006
    [17]
    宋成轶, 栾添, 邬剑波, 等. 聚合物基热界面材料界面接触热阻的研究进展[J]. 集成技术, 2019, 8(1):54-67.

    SONG Chengyi, LUAN Tian, WU Jianbo, et al. Research progress on the interface contact thermal resistance of polymer-based thermal interface materials[J]. Integrated Technology,2019,8(1):54-67(in Chinese).
    [18]
    SHEN H, GUO J, WANG H, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces,2015,7(10):5701-5708.
    [19]
    ZHAO H R, DING J H, SHAO Z Z, et al. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers[J]. ACS Applied Materials & Interfaces,2019,11(40):37247-37255.
    [20]
    WANG L, WU W, DRUMMER D, et al. Study on thermal conductive PA6 composites with 3-dimensional structured boron nitride hybrids[J]. Journal of Applied Polymer Science,2019,136(23):47630. doi: 10.1002/app.47630
    [21]
    WANG F F, ZENG X L, YAO Y M, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6(1):19394. doi: 10.1038/srep19394
    [22]
    卫延斌, 史仪凯, 刘澎. 粘弹性材料剪切模量松弛函数的拟合研究[J]. 兵工学报, 2010, 31(10):1409-1412.

    WEI Yanbin, SHI Yikai, LIU Peng. Research on fitting the shear modulus relaxation function of viscoelastic materials[J]. Acta Armamentarii,2010,31(10):1409-1412(in Chinese).
    [23]
    WANG X B, PAKDEL A, ZHANG J, et al. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties[J]. Nanoscale Research Letters,2012,7(1):1-7. doi: 10.1186/1556-276X-7-1
    [24]
    ZAMEL N, LITOVSKY E, LI X G, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from -50 to +120℃[J]. International Journal of Hydrogen Energy,2011,36(19):12618-12625. doi: 10.1016/j.ijhydene.2011.06.097
    [25]
    YAO Y M, ZHU X D, ZENG X L, et al. Vertically aligned and interconnected sic nanowire networks leading to significantly enhanced thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2018,10(11):9669-9678.
    [26]
    PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E
    [27]
    KIM K, KIM J. BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating[J]. Polymer,2016,101:168-175.
    [28]
    TIAN X J, ITKIS M E, HADDON R C. Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers[J]. Scientific Reports,2015,5(1):13108. doi: 10.1038/srep13108
    [29]
    SONG N, JIAO D J, CUI S Q, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces,2017,9(3):2924-2932.
    [30]
    JI C, YAN C Z, WANG Y, et al. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network[J]. Composites Part B: Engineering,2019,163:363-370.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (1034) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return