Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
MA Li, WEN Ange, SHEN Chuanchuan, et al. Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001
Citation: MA Li, WEN Ange, SHEN Chuanchuan, et al. Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3590-3602. doi: 10.13801/j.cnki.fhclxb.20210903.001

Wrinkles in fiber-reinforced resin composites: Micro-stress non-destructive testing

doi: 10.13801/j.cnki.fhclxb.20210903.001
  • Received Date: 2021-06-07
  • Accepted Date: 2021-08-20
  • Rev Recd Date: 2021-07-18
  • Available Online: 2021-09-03
  • Publish Date: 2022-07-30
  • Various defects with dispersive feature sizes can be accumulated inevitably in fiber-reinforced resin composites during their manufacturing and service processes, which are also difficult to be detected. The final objective of defects testing is to obtain the accuracy assessment of performance of defective structures. A micro-stress non-destructive defect detection and evaluation method is proposed for fiber-reinforced resin composites, which is especially suitable for composites measurement. Combing with the optical measurement technology for full-field displacement, the abnormal responses which caused by the defects of the structure under low stress level is able to be captured. The wrinkle defect detection is taken as an example to show the measurement processes. First, a specific detection scheme is designed based on the theoretical prediction of characteristic responses of wrinkles. Then, a new method of full-field displacement measurement is innovatively proposed based on the grating projection technology. Results show that under the axial tensile loading, the distorted out-of-plane displacements caused by wrinkles can be detected by the improved grating projection technology. The distorted displacements revealed the spatial distribution and severity of defects, and the influence on structural performance degradation can be evaluated based on the degree of displacement distortion. Further, by applying the optical-mechanical detection method, the mechanical responses of the defective component under a given working condition can be obtained directly, which can provide a reference for the adaptability evaluation of the component.

     

  • loading
  • [1]
    欧阳佳斯. 带波纹/褶皱类缺陷的纤维增强树脂基复合材料压缩性能研究[D]. 武汉: 武汉理工大学, 2016.

    OUYANG Jiasi. Study on the compressive mechanical pro-perty of fiberreinforced composites with waviness defect[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [2]
    TAY T E, SHEN F. Analysis of delamination growth in lami-nated composites with consideration for residual thermal stress effects[J]. Journal of Composite Materials,2002,36(11):1299-1320. doi: 10.1177/0021998302036011592
    [3]
    丁珊珊. 考虑孔隙形貌的CFRP复合材料超声散射机理及孔隙率检测方法研究[D]. 大连: 大连理工大学, 2017.

    DING Shanshan. Ultrasonic scattering mechanism and porosity detection in CFRP composite materials considering void morphology[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [4]
    SAENZ-CASTILLO D, MARTÍN M I, CALVO S, et al. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2019,121:308-320. doi: 10.1016/j.compositesa.2019.03.035
    [5]
    MUKHOPADHYAY S, JONES M I, HALLETT S R. Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites Part A: Applied Science and Manufacturing,2015,77:219-228. doi: 10.1016/j.compositesa.2015.07.007
    [6]
    NELSON L J, SMITH R A. Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data[J]. Composites Part A: Applied Science and Manufacturing,2019,118:1-8. doi: 10.1016/j.compositesa.2018.12.009
    [7]
    SUTCLIFFE M P F, LEMANSKI S L, SCOTT A E. Measurement of fibre waviness in industrial composite components[J]. Composites Science and Technology,2012,72(16):2016-2023. doi: 10.1016/j.compscitech.2012.09.001
    [8]
    CREIGHTON C J, SUTCLIFFE M, CLYNE T W. A multiple field image analysis procedure for characterisation of fibre alignment in composites[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):221-229. doi: 10.1016/S1359-835X(00)00115-9
    [9]
    REVOL V, PLANK B, KAUFMANN R, et al. Laminate fibre structure characterisation of carbon fibre-reinforced polymers by X-ray scatter dark field imaging with a grating interferometer[J]. NDT & E International,2013,58:64-71.
    [10]
    ZARDAN J P, GUEUDRE C, GORNELOUP G. Study of induced ultrasonic deviation for the detection and identification of ply waviness in carbon fibre reinforced polymer[J]. NDT & E International,2013,56(jun.):1-9.
    [11]
    LARRAÑAGA-VALSERO B, SMITH R A, TAYONG R B, et al. Wrinkle measurement in glass-carbon hybrid laminates comparing ultrasonic techniques: A case study[J]. Composites Part A: Applied Science and Manufacturing,2018,114:225-240. doi: 10.1016/j.compositesa.2018.08.014
    [12]
    ZHANG Z, LIU M, LI Q, et al. Visualized characterization of diversified defects in thick aerospace composites using ultrasonic B-scan[J]. Composites Communications,2020,22:100435. doi: 10.1016/j.coco.2020.100435
    [13]
    PARK B, AN Y, SOHN H. Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning[J]. Composites Science and Technology,2014,100:10-18. doi: 10.1016/j.compscitech.2014.05.029
    [14]
    IBRAHIM M E, SMITH R A, WANG C H. Ultrasonic detection and sizing of compressed cracks in glass-and carbon-fibre reinforced plastic composites[J]. NDT & E International,2017,92:111-121.
    [15]
    ELHAJJAR R, HAJ-ALI R, WEI B. An infrared thermoelastic stress analysis investigation for detecting fiber waviness in composite structures[J]. Polymer-Plastics Technology and Engineering,2014,53(12):1251-1258. doi: 10.1080/03602559.2014.886116
    [16]
    KATUNIN A, DRAGAN K, DZIENDZIKOWSKI M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques[J]. Composite Structures,2015,127:1-9.
    [17]
    LI Y, SUN B, GU B. Impact shear damage characterizations of 3D braided composite with X-ray micro-computed tomography and numerical methodologies[J]. Composite Structures,2017,176(9):43-54.
    [18]
    CHEN X. Fractographic analysis of sandwich panels in a composite wind turbine blade using optical microscopy and X-ray computed tomography[J]. Engineering Failure Analysis,2020,111:104475. doi: 10.1016/j.engfailanal.2020.104475
    [19]
    洪友仁, 何浩培, 何小元. 剪切散斑: 一种光学测量技术及其应用[J]. 实验力学, 2006, 21(6):667-688. doi: 10.3969/j.issn.1001-4888.2006.06.001

    HONG Youren, HE Haopei, HE Xiaoyuan. Shearography: An optical measurement technique and applications[J]. Journal of Experimental Mechanics,2006,21(6):667-688(in Chinese). doi: 10.3969/j.issn.1001-4888.2006.06.001
    [20]
    FERREIRA L M, GRACIANI E, PARÍS F. Three dimensional finite element study of the behaviour and failure mechanism of non-crimp fabric composites under in-plane compression[J]. Composite Structures,2016,149:106-113. doi: 10.1016/j.compstruct.2016.04.022
    [21]
    LEONG M, HVEJSEL C F, THOMSEN O T, et al. Fatigue failure of sandwich beams with face sheet wrinkle defects[J]. Composites Science and Technology,2012,72(13):1539-1547.
    [22]
    AYMERICH F, DORE F, PRIOLO P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements[J]. Composites Science and Technology,2008,68(12):2383-2390. doi: 10.1016/j.compscitech.2007.06.015
    [23]
    TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures,2018,189:419-427. doi: 10.1016/j.compstruct.2017.10.086
    [24]
    申川川, 马利, 文安戈, 等. 纤维增强树脂复合材料中的褶皱缺陷: 分散性与虚拟测试[J]. 复合材料学报, 2022, 39(3):1332-1342. doi: 10.13801/j.cnki.fhclxb.20210518.007

    SHEN Chuanchuan, MA Li, WEN Ange, et al. Wrinkles in fiber-reinforced resin composites (Part I): Heterogeneity and virtual test[J]. Acta Materiae Composites Sinica,2022,39(3):1332-1342(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210518.007
    [25]
    MUKHOPADHYAY S, JONES M I, HALLETT S R. Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-142. doi: 10.1016/j.compositesa.2015.03.012
    [26]
    LEMANSKI S L, SUTCLIFFE M P F. Compressive failure of finite size unidirectional composite laminates with a region of fibre waviness[J]. Composites Part A: Applied Science and Manufacturing,2012,43(3):435-444.
    [27]
    RIDDLE T, CAIRNS D, NELSON J. Characterization of manu-facturing defects common to composite wind turbine blades: Flaw characterization[C]. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, 2011.
    [28]
    SHEN C, MA L, XU P, et al. Virtual testing of mechanical response of composite plates with normally distributed wrinkles[J]. Composite Structures,2019,229:111440. doi: 10.1016/j.compstruct.2019.111440
    [29]
    MA L, SHEN C C, WEN A G, et al. Dependence between displacement distortion and heterogeneity of vegetable fiber composites[J]. Mechanics of Advanced Materials and Structures, 2022, 29: 1889079 .
    [30]
    SHEN C C, MA L, WEN A G, et al. Composite plates with randomly distributed weak bonding: Heterogeneity and virtual testing[J]. Mechanics of Advanced Materials and Structures,2022,29:1928344.
    [31]
    FELIPE-SESÉ L, LÓPEZ-ALBA E, SIEGMANN P, et al. Integration of fringe projection and two-dimensional digital image correlation for three-dimensional displacements measurements[J]. Optical Engineering,2016,55(12):121711. doi: 10.1117/1.OE.55.12.121711
    [32]
    WU Z J, GUO W B, PAN B, et al. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces[J]. Optics and Lasers in Engineering, 2021, 142: 106614.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views (1044) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return