NIU Haicheng, GAO Jinlong, JI Jiakun, et al. Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3994-4004. DOI: 10.13801/j.cnki.fhclxb.20210902.002
Citation: NIU Haicheng, GAO Jinlong, JI Jiakun, et al. Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3994-4004. DOI: 10.13801/j.cnki.fhclxb.20210902.002

Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns

More Information
  • Received Date: July 20, 2021
  • Revised Date: August 14, 2021
  • Accepted Date: August 18, 2021
  • Available Online: September 01, 2021
  • To study the difference of the axial compressive performance of recycled concrete composite columns and ordinary concrete composite columns, the experiments of two high-strength ordinary concrete-filled steel tube reinforced concrete columns (CFSTRCC) and three high-strength recycled CFSTRCC were conducted under axial loading. The concrete type, cross-sectional shape of the steel tube and whether the cross-shaped tie bars were set or not in the square steel tube were chosen to be the main parameters. The experimental results show that the damage development process and failure modes of recycled concrete specimens are similar to those of normal concrete specimens. The bearing capacity and energy dissipation capacity of recycled concrete specimens are higher than those of the ordinary concrete specimens. However, it has serious spalling of concrete and poor ductility. When the set cross-shaped tie bars were installed in the square steel tube, the ductility has been significantly improved, and the bearing capacity and energy consumption have also been significantly increased due to the tie bar enhancing the restraint of the square steel tube to the core concrete. Meanwhile, the peak load corresponds to a larger peak strain, so the materials are more fully utilized. Under the condition of the steel tube equal cross-sectional area and close material strength, CFSTRCC with circular steel tube has higher bearing capacity, better deformation ability and stronger energy dissipation capacity than CFSTRCC with square steel tube. According to the relevant domestic and foreign regulations, the ultimate bearing capacity of 26 recycled CFSTRCC from this paper and other references were calculated. The results show that the calculation results for the axial compression bearing capacity of CFSTRCC are in well agreement with the experiment results.
  • [1]
    DUAN H B, MILLER T R, LIU G, et al. Construction debris becomes growing concern of growing cities[J]. Waste Manage,2019,83:1-5. DOI: 10.1016/j.wasman.2018.10.044
    [2]
    邵鹏康, 韩旵国. 浅谈建筑垃圾的回收利用问题—关于再生混凝土的现代工程应用[J]. 中国科技信息, 2010(19):21-22.

    SHAO Pengkang, HAN Xingguo. Discussion on the recycling of construction waste-On the modern engineering application of recycled concrete[J]. China Science and Technology Information,2010(19):21-22(in Chinese).
    [3]
    GOLAFSHANI E M, BEHNOOD A. Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete[J]. Applied Soft Computing,2018,64:377-400. DOI: 10.1016/j.asoc.2017.12.030
    [4]
    CHINCHILLAS M J, ROSAS C C, ARREDOND-REA S P, et al. SEM image analysis in permeable recycled concretes with silica fume: A quantitative comparison of porosity and the ITZ[J]. Materials,2019,12(13):2201. DOI: 10.3390/ma12132201
    [5]
    GOLAFSHANI E M, BEHNOOD A. Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete[J]. Journal of Cleaner Production,2018,176:1163-1176. DOI: 10.1016/j.jclepro.2017.11.186
    [6]
    CHEN J, WANG Y Y, CHARLS W R, et al. Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading[J]. Engineering Structures,2017,130:23-40. DOI: 10.1016/j.engstruct.2016.09.046
    [7]
    陈宗平, 张士前, 王妮, 等. 钢管再生混凝土轴压短柱受力性能的试验与理论分析[J]. 工程力学, 2013, 30(4):107-114. DOI: 10.6052/j.issn.1000-4750.2011.09.0589

    CHEN Zongping, ZHANG Shiqian, WANG Ni, et al. Experimental study and theoretical analysis on axial compress capacity of recycled aggregate concrete-filled circle steeltube short column[J]. Engineering Mechanics,2013,30(4):107-114(in Chinese). DOI: 10.6052/j.issn.1000-4750.2011.09.0589
    [8]
    牛海成, 曹万林, 董宏英, 等. 钢管高强再生混凝土柱轴压性能试验研究[J]. 建筑结构学报, 2015, 36(6):128-136.

    NIU Haicheng, CAO Wanlin, DONG Hongying, et al. Experimental study on high-strength recycled concrete steel tube columns subjected to axial compression[J]. Journal of Building Structures,2015,36(6):128-136(in Chinese).
    [9]
    HAN L H, HOU C C, WANG Q L. Behavior of circular CFST stub columns under sustained load and chloride corrosion[J]. Journal of Constructional Steel Research,2014,103:23-36. DOI: 10.1016/j.jcsr.2014.07.021
    [10]
    XU L, LIU Y B. Concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire: Experiment[J]. Advances Structural Engineering,2013,16(7):1263-1282. DOI: 10.1260/1369-4332.16.7.1263
    [11]
    LEE H J, PARK H G, PARK S S, et al. Cyclic loading test for exterior beam-column joints of ceft columns[J]. Engineers Structures,2016,142(2):04015147.
    [12]
    CAI M, KE X J, SU Y S. Axial compressive performance of RAC-encased RACFST composite columns[J]. Engineers Structures,2020,210:110393. DOI: 10.1016/j.engstruct.2020.110393
    [13]
    PARK H G, LEE H J, CHOR I R, et al. Concrete-filled steel tube columns encased with thin precast concrete[J]. Journal of Structural Engineering,2015,141(12):04015056.
    [14]
    郭全全, 李芊, 章沛瑶, 等. 钢管混凝土叠合柱偏心受压承载力的计算方法[J]. 土木工程学报, 2014, 47(5):56-63.

    GUO Quanquan, LI Qian, ZHANG Peiyao, et al. Calculation for bearing capacity under eccentric compression of concrete-filled steel tube columns[J]. China Civil Engineering Journal,2014,47(5):56-63(in Chinese).
    [15]
    康洪震, 钱稼茹. 钢管高强混凝土组合柱轴压承载力试验研究[J]. 建筑结构, 2011, 41(6):64-67.

    KANG Hongzhen, QIAN Jiaru. Experimental study on bearing capacity of steel tube high-strength concrete compo-site columns under axial compression[J]. Building Structure,2011,41(6):64-67(in Chinese).
    [16]
    刘阳, 郭子雄, 贾磊鹏, 等. 核心钢管混凝土叠合短柱轴压性能及设计方法研究[J]. 建筑结构学报, 2015, 36(12):135-142.

    LIU Yang, GUO Zixiong, JIA Leipeng, et al. Experimental study on axial compression performance and design method of core steel tube reinforced concrete short columns[J]. Journal of Building Structures,2015,36(12):135-142(in Chinese).
    [17]
    钱稼茹, 江枣. 钢管混凝土组合柱轴心受压承载力计算方法[J]. 工程力学, 2011, 28(4):49-57.

    QIAN Jiaru, JIANG Zao. Calculation method for axial compressive strength of steel tube-reinforce concrete compo-site columns[J]. Engineering Mechanics,2011,28(4):49-57(in Chinese).
    [18]
    柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12):134-142.

    KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics,2018,35(12):134-142(in Chinese).
    [19]
    陈宗平, 占东辉, 徐金俊. 再生粗骨料含量对再生混凝土力学性能的影响分析[J]. 工业建筑, 2015, 45(1):130-145.

    CHEN Zongping, ZHAN Donghui, XU Jinjun. Research on mechanical properties of recycled concrete using different recycled coarse aggregate replacement[J]. Industrial Construction,2015,45(1):130-145(in Chinese).
    [20]
    RIDAUAN A R M. The influence of recycled aggregate concrete on the compressive strength and drying shrinkage of concrete[C]//Proceedings of international conference on structural engineering, mechanics and computation. Cape Town, 2001: 1415-1421.
    [21]
    HANSEN T C. Strength of recycled aggregate concrete made from crushed concrete coarse aggregate[J]. Concrete International,1983(1):79-83.
    [22]
    CHENTNA M V, DARSHANA R B. Evaluation of modulus of elasticity for recycled coarse aggregate concrete[J]. International Journal of Engineering Science and Innovative Technology,2013,2(1):26-29.
    [23]
    YODA K, YOSHIKANE T. Recycled cement and recycled concrete in Japan[C]//Proceedings of the second international RILEM symposium on demolition and reuse of concrete and masonry. Tokyo, 1988: 527-536.
    [24]
    齐岳. 核心高强混凝土柱力学性能[M]. 黑龙江: 黑龙江大学出版社, 2013.

    QI Yue. Mechanical properties of core high-concrete columns[M]. Heilongjiang: Heilongjiang University Press, 2013(in Chinese).
    [25]
    中国工程建设标准化协会. 钢管混凝土叠合柱结构技术规程: T/CECS188—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Standards of China Engineering Construction Standardization Association. Technical specification for steel tube-reinforced concrete column structure: T/CECS188—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [26]
    American Concrete Institute. Building code requirements for structural concrete and commentary: ACI318-11[S]. Detroit: American Concrete Institute International, 2011.
    [27]
    American Standards Association. Specification for structural steel buildings: ANSI/AISC 360-10[S]. Chicago: American Institute of Steel Construction (AISC), 2010.
    [28]
    European Committee for Standardization. Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings: BS EN 1992-1-1 2004[S]. Brussels: European Committee for Standardization International, 2004.
    [29]
    European Committee for Standardization. Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules-structural rules for buildings[S]. Brussels: European Committee for Standardization International, 2004.
    [30]
    HAN L H, AN Y F. Performance of concrete-encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research,2014,92:62-76.
    [31]
    武骏宇. 钢管再生混凝土组合柱轴压性能试验研究[D]. 南宁: 广西大学, 2015.

    WU Junyu. Experimental study on axial compression performance of recycled concrete-filled steel tube composite columns[D]. Nanning: Guangxi University, 2015(in Chinese).
  • Related Articles

    [1]LIU Zehao, KANG Min, GENG Chunlei. Effect of BN(h) content on the friction and wear properties of ultrasonic-pulse electrodeposited Ni-P-WC-BN(h) coatings[J]. Acta Materiae Compositae Sinica.
    [2]TIAN Jingwei, BAI Yanbo, LI Chenggao, XIAN Guijun. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5011-5025. DOI: 10.13801/j.cnki.fhclxb.20230110.003
    [3]ZHANG Zhanzhan, CHEN Yunbo, ZHANG Yang, GAO Kewei, ZUO Lingli, QI Yesi. Tribology characteristics of WC/Fe composites by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2288-2295. DOI: 10.13801/j.cnki.fhclxb.20170302.007
    [4]QIAN Baowei, LIU Wei, JIA Zhenyuan, FU Rao, BAI Yu, HE Chunling. Wear mechanism of double point angle drill bit in drilling CFRP composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 749-757. DOI: 10.13801/j.cnki.fhclxb.20160823.001
    [5]YANG Shaofeng, ZHANG Yan, CAI Yunjie, SHEN Chengxiang, CHEN Weiping. Dry friction and wear properties of 3D-meshy Al2O3 ceramic reinforced high chromium iron composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 683-691.
    [6]PEI Yang, ZHU Shigen, QU Haixia. Two-step hot-pressing sintering of composite WC-40%Al2O3 compacts[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 127-134.
    [7]YANG Shaofeng, ZHANG Yan, CHEN Weiping. Friction and wear properties of Fe matrix composites reinforced with 3D-meshy Al2O3[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 128-135.
    [8]WEI Xucheng, SU Zhenguo, XU Baiming, AN Jian, SHEN Yusen, LIU Saiyin. Friction and wear behaviours between GF/PA66 composite and Al2O3 ceramic[J]. Acta Materiae Compositae Sinica, 2012, (5): 47-52.
    [9]YANG Rui-cheng, SHI Rui-xia, WANG Hui, WANG Jun-min. HARDENING EFFECTS AND MICRO-MECHANISMS OF WC/STEEL MATRIX COMPOSITES AFTER AUSTENIZATION[J]. Acta Materiae Compositae Sinica, 2002, 19(2): 41-44.
    [10]You Xinghe. BEHAVIOURAL STUDY OF HIGH TEMPERATURE PLASTIC FLOW WEAR OF WC-STEEL COMPOSITE MATERIAL[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 99-105.
  • Cited by

    Periodical cited type(16)

    1. 杨小刚,孔明洁,赵家玉,李斌. 硫酸二次掺杂聚苯胺/石墨烯/碳纳米管复合材料制备及其防腐性能. 复合材料学报. 2025(02): 924-936 . 本站查看
    2. 戴丽艳. 复合催化剂Ag-Ti/碳纤维的制备及光催化降解罗丹明B. 化学工程师. 2024(03): 11-13+18 .
    3. 方媛,闫嘉琪,孙景齐,韩鹏辉,赵顺强,曾立军,杨杰,朱建锋. Ti_3C_2T_x改性环氧树脂涂层的制备及其在人工海水环境下的摩擦学性能研究. 陕西科技大学学报. 2024(03): 135-143 .
    4. 陈明锴,陈磊,马彦军,张定军,周惠娣,陈建敏. 润滑耐磨耐蚀功能一体化有机黏结涂层的研究进展. 高分子材料科学与工程. 2024(04): 182-190 .
    5. 查向浩,安旭霞,李飞星,李有文,张玉才. 二维纳米材料的研究进展. 化工新型材料. 2024(09): 31-35+42 .
    6. 闫圣刚,周宇,许豪,宋光磊,于良民. 基于Ce-MOF@MXene复合材料涂层的防腐性能研究. 材料科学与工艺. 2024(06): 76-86 .
    7. 谢煜彬,胡国梁,张笑晴,雷彩红. 磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能. 复合材料学报. 2024(12): 6545-6558 . 本站查看
    8. 董邯海,程勇,程庆利,杨珂,周日峰,毕伟扬. 六亚甲基二异氰酸酯微胶囊的制备及其在自修复涂料中的应用. 表面技术. 2023(04): 272-284 .
    9. 何阳,李思盈,李传强,袁小亚,郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能. 化工进展. 2023(04): 1983-1994 .
    10. 李翊,刘杰,刘长沙,邹阳,蒋俊,孙敬庭. 基于阴极电位保护的覆土式储罐化学稳定性与耐腐蚀试验. 粘接. 2023(05): 126-129 .
    11. 苏新悦,孔存辉,庆达,赵英娜,王建省. Ti_3C_2/SrTiO_3复合材料的制备及其光电化学阴极保护性能. 复合材料学报. 2023(07): 3964-3972 . 本站查看
    12. 田经纬,白艳博,李承高,咸贵军. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制. 复合材料学报. 2023(09): 5011-5025 . 本站查看
    13. 刘嘉源,张宏亮,左晓宝,邹欲晓. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响. 复合材料学报. 2023(09): 5046-5056 . 本站查看
    14. 张泽旭,王睿,白旭秋,郑峻,袁才登. 氧化石墨烯改性EP/PU防腐涂料的制备及性能. 塑料. 2023(05): 6-10+15 .
    15. 栗洋,牛永平,杨康,杜三明,杨璐璐. 二硫化钼/硫化铜纳米杂化材料改性环氧树脂摩擦学性能研究. 化工新型材料. 2023(12): 133-137+142 .
    16. 郑天麒. 碳纤维改性环氧树脂基复合材料的制备及性能研究. 功能材料. 2022(12): 12147-12151 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (1051) PDF downloads (64) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return