Citation: | NIU Haicheng, GAO Jinlong, JI Jiakun, et al. Axial compression behavior of high-strength recycled concrete filled steel tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3994-4004. DOI: 10.13801/j.cnki.fhclxb.20210902.002 |
[1] |
DUAN H B, MILLER T R, LIU G, et al. Construction debris becomes growing concern of growing cities[J]. Waste Manage,2019,83:1-5. DOI: 10.1016/j.wasman.2018.10.044
|
[2] |
邵鹏康, 韩旵国. 浅谈建筑垃圾的回收利用问题—关于再生混凝土的现代工程应用[J]. 中国科技信息, 2010(19):21-22.
SHAO Pengkang, HAN Xingguo. Discussion on the recycling of construction waste-On the modern engineering application of recycled concrete[J]. China Science and Technology Information,2010(19):21-22(in Chinese).
|
[3] |
GOLAFSHANI E M, BEHNOOD A. Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete[J]. Applied Soft Computing,2018,64:377-400. DOI: 10.1016/j.asoc.2017.12.030
|
[4] |
CHINCHILLAS M J, ROSAS C C, ARREDOND-REA S P, et al. SEM image analysis in permeable recycled concretes with silica fume: A quantitative comparison of porosity and the ITZ[J]. Materials,2019,12(13):2201. DOI: 10.3390/ma12132201
|
[5] |
GOLAFSHANI E M, BEHNOOD A. Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete[J]. Journal of Cleaner Production,2018,176:1163-1176. DOI: 10.1016/j.jclepro.2017.11.186
|
[6] |
CHEN J, WANG Y Y, CHARLS W R, et al. Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading[J]. Engineering Structures,2017,130:23-40. DOI: 10.1016/j.engstruct.2016.09.046
|
[7] |
陈宗平, 张士前, 王妮, 等. 钢管再生混凝土轴压短柱受力性能的试验与理论分析[J]. 工程力学, 2013, 30(4):107-114. DOI: 10.6052/j.issn.1000-4750.2011.09.0589
CHEN Zongping, ZHANG Shiqian, WANG Ni, et al. Experimental study and theoretical analysis on axial compress capacity of recycled aggregate concrete-filled circle steeltube short column[J]. Engineering Mechanics,2013,30(4):107-114(in Chinese). DOI: 10.6052/j.issn.1000-4750.2011.09.0589
|
[8] |
牛海成, 曹万林, 董宏英, 等. 钢管高强再生混凝土柱轴压性能试验研究[J]. 建筑结构学报, 2015, 36(6):128-136.
NIU Haicheng, CAO Wanlin, DONG Hongying, et al. Experimental study on high-strength recycled concrete steel tube columns subjected to axial compression[J]. Journal of Building Structures,2015,36(6):128-136(in Chinese).
|
[9] |
HAN L H, HOU C C, WANG Q L. Behavior of circular CFST stub columns under sustained load and chloride corrosion[J]. Journal of Constructional Steel Research,2014,103:23-36. DOI: 10.1016/j.jcsr.2014.07.021
|
[10] |
XU L, LIU Y B. Concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire: Experiment[J]. Advances Structural Engineering,2013,16(7):1263-1282. DOI: 10.1260/1369-4332.16.7.1263
|
[11] |
LEE H J, PARK H G, PARK S S, et al. Cyclic loading test for exterior beam-column joints of ceft columns[J]. Engineers Structures,2016,142(2):04015147.
|
[12] |
CAI M, KE X J, SU Y S. Axial compressive performance of RAC-encased RACFST composite columns[J]. Engineers Structures,2020,210:110393. DOI: 10.1016/j.engstruct.2020.110393
|
[13] |
PARK H G, LEE H J, CHOR I R, et al. Concrete-filled steel tube columns encased with thin precast concrete[J]. Journal of Structural Engineering,2015,141(12):04015056.
|
[14] |
郭全全, 李芊, 章沛瑶, 等. 钢管混凝土叠合柱偏心受压承载力的计算方法[J]. 土木工程学报, 2014, 47(5):56-63.
GUO Quanquan, LI Qian, ZHANG Peiyao, et al. Calculation for bearing capacity under eccentric compression of concrete-filled steel tube columns[J]. China Civil Engineering Journal,2014,47(5):56-63(in Chinese).
|
[15] |
康洪震, 钱稼茹. 钢管高强混凝土组合柱轴压承载力试验研究[J]. 建筑结构, 2011, 41(6):64-67.
KANG Hongzhen, QIAN Jiaru. Experimental study on bearing capacity of steel tube high-strength concrete compo-site columns under axial compression[J]. Building Structure,2011,41(6):64-67(in Chinese).
|
[16] |
刘阳, 郭子雄, 贾磊鹏, 等. 核心钢管混凝土叠合短柱轴压性能及设计方法研究[J]. 建筑结构学报, 2015, 36(12):135-142.
LIU Yang, GUO Zixiong, JIA Leipeng, et al. Experimental study on axial compression performance and design method of core steel tube reinforced concrete short columns[J]. Journal of Building Structures,2015,36(12):135-142(in Chinese).
|
[17] |
钱稼茹, 江枣. 钢管混凝土组合柱轴心受压承载力计算方法[J]. 工程力学, 2011, 28(4):49-57.
QIAN Jiaru, JIANG Zao. Calculation method for axial compressive strength of steel tube-reinforce concrete compo-site columns[J]. Engineering Mechanics,2011,28(4):49-57(in Chinese).
|
[18] |
柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12):134-142.
KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics,2018,35(12):134-142(in Chinese).
|
[19] |
陈宗平, 占东辉, 徐金俊. 再生粗骨料含量对再生混凝土力学性能的影响分析[J]. 工业建筑, 2015, 45(1):130-145.
CHEN Zongping, ZHAN Donghui, XU Jinjun. Research on mechanical properties of recycled concrete using different recycled coarse aggregate replacement[J]. Industrial Construction,2015,45(1):130-145(in Chinese).
|
[20] |
RIDAUAN A R M. The influence of recycled aggregate concrete on the compressive strength and drying shrinkage of concrete[C]//Proceedings of international conference on structural engineering, mechanics and computation. Cape Town, 2001: 1415-1421.
|
[21] |
HANSEN T C. Strength of recycled aggregate concrete made from crushed concrete coarse aggregate[J]. Concrete International,1983(1):79-83.
|
[22] |
CHENTNA M V, DARSHANA R B. Evaluation of modulus of elasticity for recycled coarse aggregate concrete[J]. International Journal of Engineering Science and Innovative Technology,2013,2(1):26-29.
|
[23] |
YODA K, YOSHIKANE T. Recycled cement and recycled concrete in Japan[C]//Proceedings of the second international RILEM symposium on demolition and reuse of concrete and masonry. Tokyo, 1988: 527-536.
|
[24] |
齐岳. 核心高强混凝土柱力学性能[M]. 黑龙江: 黑龙江大学出版社, 2013.
QI Yue. Mechanical properties of core high-concrete columns[M]. Heilongjiang: Heilongjiang University Press, 2013(in Chinese).
|
[25] |
中国工程建设标准化协会. 钢管混凝土叠合柱结构技术规程: T/CECS188—2019[S]. 北京: 中国建筑工业出版社, 2019.
Standards of China Engineering Construction Standardization Association. Technical specification for steel tube-reinforced concrete column structure: T/CECS188—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
|
[26] |
American Concrete Institute. Building code requirements for structural concrete and commentary: ACI318-11[S]. Detroit: American Concrete Institute International, 2011.
|
[27] |
American Standards Association. Specification for structural steel buildings: ANSI/AISC 360-10[S]. Chicago: American Institute of Steel Construction (AISC), 2010.
|
[28] |
European Committee for Standardization. Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings: BS EN 1992-1-1 2004[S]. Brussels: European Committee for Standardization International, 2004.
|
[29] |
European Committee for Standardization. Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules-structural rules for buildings[S]. Brussels: European Committee for Standardization International, 2004.
|
[30] |
HAN L H, AN Y F. Performance of concrete-encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research,2014,92:62-76.
|
[31] |
武骏宇. 钢管再生混凝土组合柱轴压性能试验研究[D]. 南宁: 广西大学, 2015.
WU Junyu. Experimental study on axial compression performance of recycled concrete-filled steel tube composite columns[D]. Nanning: Guangxi University, 2015(in Chinese).
|
[1] | LIU Zehao, KANG Min, GENG Chunlei. Effect of BN(h) content on the friction and wear properties of ultrasonic-pulse electrodeposited Ni-P-WC-BN(h) coatings[J]. Acta Materiae Compositae Sinica. |
[2] | TIAN Jingwei, BAI Yanbo, LI Chenggao, XIAN Guijun. Enhancement mechanism of nylon 6 filler on the mechanical and frictional wear properties of carbon fiber-epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5011-5025. DOI: 10.13801/j.cnki.fhclxb.20230110.003 |
[3] | ZHANG Zhanzhan, CHEN Yunbo, ZHANG Yang, GAO Kewei, ZUO Lingli, QI Yesi. Tribology characteristics of WC/Fe composites by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2288-2295. DOI: 10.13801/j.cnki.fhclxb.20170302.007 |
[4] | QIAN Baowei, LIU Wei, JIA Zhenyuan, FU Rao, BAI Yu, HE Chunling. Wear mechanism of double point angle drill bit in drilling CFRP composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 749-757. DOI: 10.13801/j.cnki.fhclxb.20160823.001 |
[5] | YANG Shaofeng, ZHANG Yan, CAI Yunjie, SHEN Chengxiang, CHEN Weiping. Dry friction and wear properties of 3D-meshy Al2O3 ceramic reinforced high chromium iron composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 683-691. |
[6] | PEI Yang, ZHU Shigen, QU Haixia. Two-step hot-pressing sintering of composite WC-40%Al2O3 compacts[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 127-134. |
[7] | YANG Shaofeng, ZHANG Yan, CHEN Weiping. Friction and wear properties of Fe matrix composites reinforced with 3D-meshy Al2O3[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 128-135. |
[8] | WEI Xucheng, SU Zhenguo, XU Baiming, AN Jian, SHEN Yusen, LIU Saiyin. Friction and wear behaviours between GF/PA66 composite and Al2O3 ceramic[J]. Acta Materiae Compositae Sinica, 2012, (5): 47-52. |
[9] | YANG Rui-cheng, SHI Rui-xia, WANG Hui, WANG Jun-min. HARDENING EFFECTS AND MICRO-MECHANISMS OF WC/STEEL MATRIX COMPOSITES AFTER AUSTENIZATION[J]. Acta Materiae Compositae Sinica, 2002, 19(2): 41-44. |
[10] | You Xinghe. BEHAVIOURAL STUDY OF HIGH TEMPERATURE PLASTIC FLOW WEAR OF WC-STEEL COMPOSITE MATERIAL[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 99-105. |
1. |
杨小刚,孔明洁,赵家玉,李斌. 硫酸二次掺杂聚苯胺/石墨烯/碳纳米管复合材料制备及其防腐性能. 复合材料学报. 2025(02): 924-936 .
![]() | |
2. |
戴丽艳. 复合催化剂Ag-Ti/碳纤维的制备及光催化降解罗丹明B. 化学工程师. 2024(03): 11-13+18 .
![]() | |
3. |
方媛,闫嘉琪,孙景齐,韩鹏辉,赵顺强,曾立军,杨杰,朱建锋. Ti_3C_2T_x改性环氧树脂涂层的制备及其在人工海水环境下的摩擦学性能研究. 陕西科技大学学报. 2024(03): 135-143 .
![]() | |
4. |
陈明锴,陈磊,马彦军,张定军,周惠娣,陈建敏. 润滑耐磨耐蚀功能一体化有机黏结涂层的研究进展. 高分子材料科学与工程. 2024(04): 182-190 .
![]() | |
5. |
查向浩,安旭霞,李飞星,李有文,张玉才. 二维纳米材料的研究进展. 化工新型材料. 2024(09): 31-35+42 .
![]() | |
6. |
闫圣刚,周宇,许豪,宋光磊,于良民. 基于Ce-MOF@MXene复合材料涂层的防腐性能研究. 材料科学与工艺. 2024(06): 76-86 .
![]() | |
7. |
谢煜彬,胡国梁,张笑晴,雷彩红. 磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能. 复合材料学报. 2024(12): 6545-6558 .
![]() | |
8. |
董邯海,程勇,程庆利,杨珂,周日峰,毕伟扬. 六亚甲基二异氰酸酯微胶囊的制备及其在自修复涂料中的应用. 表面技术. 2023(04): 272-284 .
![]() | |
9. |
何阳,李思盈,李传强,袁小亚,郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能. 化工进展. 2023(04): 1983-1994 .
![]() | |
10. |
李翊,刘杰,刘长沙,邹阳,蒋俊,孙敬庭. 基于阴极电位保护的覆土式储罐化学稳定性与耐腐蚀试验. 粘接. 2023(05): 126-129 .
![]() | |
11. |
苏新悦,孔存辉,庆达,赵英娜,王建省. Ti_3C_2/SrTiO_3复合材料的制备及其光电化学阴极保护性能. 复合材料学报. 2023(07): 3964-3972 .
![]() | |
12. |
田经纬,白艳博,李承高,咸贵军. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制. 复合材料学报. 2023(09): 5011-5025 .
![]() | |
13. |
刘嘉源,张宏亮,左晓宝,邹欲晓. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响. 复合材料学报. 2023(09): 5046-5056 .
![]() | |
14. |
张泽旭,王睿,白旭秋,郑峻,袁才登. 氧化石墨烯改性EP/PU防腐涂料的制备及性能. 塑料. 2023(05): 6-10+15 .
![]() | |
15. |
栗洋,牛永平,杨康,杜三明,杨璐璐. 二硫化钼/硫化铜纳米杂化材料改性环氧树脂摩擦学性能研究. 化工新型材料. 2023(12): 133-137+142 .
![]() | |
16. |
郑天麒. 碳纤维改性环氧树脂基复合材料的制备及性能研究. 功能材料. 2022(12): 12147-12151 .
![]() |