Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
GUO Qi, GAO Yuan, LI Shuanhong, et al. Research progress in the enhanced polymer airtightness of graphene[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 896-906. doi: 10.13801/j.cnki.fhclxb.20210820.005
Citation: GUO Qi, GAO Yuan, LI Shuanhong, et al. Research progress in the enhanced polymer airtightness of graphene[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 896-906. doi: 10.13801/j.cnki.fhclxb.20210820.005

Research progress in the enhanced polymer airtightness of graphene

doi: 10.13801/j.cnki.fhclxb.20210820.005
  • Received Date: 2021-05-31
  • Accepted Date: 2021-07-31
  • Rev Recd Date: 2021-07-26
  • Available Online: 2021-08-23
  • Publish Date: 2021-03-01
  • Graphene is considered to be a promising gas barrier filler, complete monolayer graphene blocks the vast majority of small gaseous molecules through its surface, so graphene is widely used as a filler to improve the gas density of the polymer. The research progress of graphene and its derivatives enhancing polymer airtightness in recent years is reviewed. The characteristics of graphene and its barrier mechanism in polymer matrix are introduced, the main factors affecting the barrier of layered graphene/polymer nanocomposite are discussed. The methods of enhancement of graphene and the derivatives of different polymer gas density are analyzed. Finally, the research of graphene and its derivatives enhancing polymer airtightness is summarized and the future development direction is prospected.

     

  • loading
  • [1]
    CUI Y, KUNDALWAL S I, KUMAR S. Gas barrier perfor-mance of graphene/polymer nanocomposites[J]. Carbon,2016,98:313-333. doi: 10.1016/j.carbon.2015.11.018
    [2]
    YOU J, WON S, JIN H J, et al. Nano-patching defects of reduced graphene oxide by cellulose nanocrystals in scalable polymer nanocomposites[J]. Carbon,2020,165:18-25. doi: 10.1016/j.carbon.2020.04.024
    [3]
    REN P G, LIU X H, REN F,et al. Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties[J]. Polymer Testing,2017,58:173-180. doi: 10.1016/j.polymertesting.2016.12.022
    [4]
    REN F, TAN W, DUAN Q, et al. Ultra-low gas permeable cellulose nanofiber nanocomposite films filled with highly oriented grapheneoxide nanosheets induced by shear field[J]. Carbohydrate Polymers,2019,209:310-319. doi: 10.1016/j.carbpol.2019.01.040
    [5]
    YU Q, ZHU L, LIU T, et al. Preparation of nacre-like polyimide/montmorillonite composite films with excellent water vapor barrier properties by gravity-induced deposition[J]. Advanced Materials Interfaces,2020,8:2001786. doi: 10.1002/admi.202001786
    [6]
    KONG J, LI Z, CAO Z, et al. The excellent gas barrier properties and unique mechanical properties of poly(propylene carbonate)/organo-montmorillonite nanocomposites[J]. Polymer Bulletin,2017,74(12):5065-5082. doi: 10.1007/s00289-017-2002-6
    [7]
    LIU Y W, LIU J J, DING Q, et al. Enhanced gas barrier and thermal properties of polyimide/montmorillonite nanocomposites as a result of “dual-plane” structure effect[J]. Polymer Composites,2018,39(S3):1725-1732. doi: 10.1002/pc.24713
    [8]
    XIA M, SHI K, ZHOU M, et al. Effects of chain extender and uniaxial stretching on the properties of PLA/PPC/mica composites[J]. Polymers for Advanced Technologies,2019,30(9):2436-2446. doi: 10.1002/pat.4691
    [9]
    SANCHEZ-GARCIA M D, LAGARON J M. Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour[J]. Journal of Applied Polymer Science,2010,118(1):188-199. doi: 10.1002/app.31986
    [10]
    YOO B M, SHIN H J, YOON H W, et al. Graphene and graphene oxide and their uses in barrier polymers[J]. Journal of Applied Polymer Science,2014,131(1):39628. doi: 10.1002/app.39628
    [11]
    KALAITZIDOU K, FUKUSHIMA H, DRZAL L T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon,2007,45(7):1446-1452. doi: 10.1016/j.carbon.2007.03.029
    [12]
    LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [13]
    STOLLER M, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [14]
    NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308. doi: 10.1126/science.1156965
    [15]
    BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9):351-355. doi: 10.1016/j.ssc.2008.02.024
    [16]
    BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-Layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [17]
    DAS T K, PRUSTY S. Graphene-based polymer composites and their applications[J]. Polymer-Plastics Technology and Engineering,2013,52(4):319-331. doi: 10.1080/03602559.2012.751410
    [18]
    GAO W, ALEMANY L B, CI L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry,2009,1(5):403-408. doi: 10.1038/nchem.281
    [19]
    HILTNER A, LIU R Y F, HU Y S, et al. Oxygen transport as a solid-state structure probe for polymeric materials: A review[J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(9):1047-1063. doi: 10.1002/polb.20349
    [20]
    TAN B, THOMAS N L. A review of the water barrier properties of polymer/clay and polymerigraphene nanocomposites[J]. Journal of Membrane Science,2016,514:595-612. doi: 10.1016/j.memsci.2016.05.026
    [21]
    ANDREUCCI D, CIRILLO E N M, COLANGELI M, et al. Fick and fokker–planck diffusion law in inhomogeneous media[J]. Journal of Statistical Physics,2019,174(2):469-493. doi: 10.1007/s10955-018-2187-6
    [22]
    ROSENBERG R M, PETICOLAS W L. Henry's law: A retrospective[J]. Journal of Chemical Education,2004,81(11):1647-1652. doi: 10.1021/ed081p1647
    [23]
    TERRONES M, MARTIN O, GONZÁLEZ M, et al. Inter-phases in graphene polymer-based nanocomposites: Achievements and challenges[J]. Advanced Materials,2011,23(44):5302-5310. doi: 10.1002/adma.201102036
    [24]
    XU H, XIE L, FENG Z X. Graphene oxide-driven design of strong and flexible biopolymer barrier films: From smart crystallization control to affordable engineering[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):334-349. doi: 10.1021/acssuschemeng.5b01273
    [25]
    HUANG H D, ZHOU S Y, ZHOU D, et al. Highly efficient “composite barrier wall” consisting of concentrated graphene oxide nanosheets and impermeable crystalline structure for poly(lactic acid) nanocomposite films[J]. Industrial & Engineering Chemistry Research,2016,55(35):9544-9554. doi: 10.1021/acs.iecr.6b02168
    [26]
    XU H, XIE L, WU D, et al. Immobilized graphene oxide nanosheets as thin but strong nanointerfaces in biocomposites[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2211-2222. doi: 10.1021/acssuschemeng.5b01703
    [27]
    XU P P, ZHANG S M, HUANG H D, et al. Highly efficient three-dimensional gas barrier network for biodegradable nanocomposite films at extremely low loading levels of graphene oxide nanosheets[J]. Industrial & Engineering Chemistry Research,2020,59(13):5818-5827. doi: 10.1021/acs.iecr.9b06810
    [28]
    LI F F, ZHANG C L, WENG Y N, et al. Enhancement of gas barrier properties of graphene oxide/poly (lactic acid) films using a solvent-free method[J]. Materials,2020,13:3024. doi: 10.3390/ma13133024
    [29]
    BELOSHENKO V A, VOZNYAK A V, VOZNYAK Y, et al. Effect of simple shear induced orientation process on the morphology and properties of polyolefin/graphite nanoplates composites[J]. Composites Science and Technology,2017,139:47-56. doi: 10.1016/j.compscitech.2016.12.009
    [30]
    HUI J, REN P G, SUN Z F, et al. Influences of interfacial adhesion on gas barrier property of functionalized graphene oxide/ultra-high-molecular-weight polyethylene composites with segregated structure[J]. Composite Interfaces,2017,24(8):729-741. doi: 10.1080/09276440.2017.1269517
    [31]
    KAROLINA G, ROLAND K, ANDRZEJ R, et al. Gas barrier, thermal, mechanical and rheological properties of highly aligned graphene-LDPE nanocomposites[J]. Polymers,2017,9(7):294. doi: 10.3390/polym9070294
    [32]
    HONAKER K, VAUTARD F, DRZAL L T. Influence of processing methods on the mechanical and barrier properties of HDPE-GNP nanocomposites[J]. Advanced Composites and Hybrid Materials,2021,4:492-504. doi: 10.1007/s42114-020-00181-1
    [33]
    KIM S H, KIM K H, PARK O O. Poly(propylene)-grafted thermally reduced graphene oxide and its compatibilization effect on poly(propylene)-graphene nanocomposites[J]. RSC Advances,2016,6(91):87828-87835. doi: 10.1039/C6RA17934G
    [34]
    LI X Y, BANDYOPADHYAY P, NGUYEN T T, et al. Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties[J]. Journal of Membrane Science,2018,547:80-92. doi: 10.1016/j.memsci.2017.10.031
    [35]
    CHOI B K, PARK S J, SEO M K. Effect of graphene oxide on thermal, optical, and gas permeability of graphene oxide/poly(vinyl alcohol) hybrid films using the boric acid[J]. Journal of Nanoscience & Nanotechnology,2017,17(10):7368-7372. doi: 10.1166/jnn.2017.14784
    [36]
    DING J, ZHAO C, ZHAO L, et al. Synergistic effect of α-ZrP and graphene oxide nanofillers on the gas barrier properties of PVA films[J]. Journal of Applied Polymer Science,2018,135(27):46455. doi: 10.1002/app.46455
    [37]
    REN P G, WANG H, YAN D X, et al. Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe3O4@GO sheets induced by magneticfield[J]. Composites Part A: Applied Science and Manufacturing,2017,97:1-9. doi: 10.1016/j.compositesa.2017.02.026
    [38]
    TSOU C H, ZHAO L, GAO C, et al. Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier perfor-mance[J]. Nanotechnology,2020,31(38):385703. doi: 10.1088/1361-6528/ab9786
    [39]
    SCHUEREN B, MAROUAZI H, MOHANTY A, et al. Polyvinyl alcohol-few layer graphene composite films prepared from aqueous colloids. Investigations of mechanical, conduc-tive and gas barrier properties[J]. Nanomaterials,2020,10(5):858. doi: 10.3390/nano10050858
    [40]
    MADHAD H V, VASAVA D V. Review on recent progress in synthesis of graphene-polyamide nanocomposites[J]. Journal of Thermoplastic Composite Materials,2019,(3):1-29. doi: 10.1177/0892705719880942
    [41]
    YOUSEF S, SARWAR Z, EREIKA J, et al. A new industrial technology for mass production of graphene/PEBA membranes for CO2/CH4 selectivity with high dispersion, thermal and mechanical performance[J]. Polymers,2020,12:831. doi: 10.3390/polym12040831
    [42]
    RAINE T P, ISTRATE O M, KING B E, et al. Graphene/polyamide laminates for supercritical CO2 and H2S barrier app-lications: An approach toward permeation shutdown[J]. Advanced Materials Interfaces,2018,5(15):1800304. doi: 10.1002/admi.201800304
    [43]
    LI X, BANDYOPADHYAY P, GUO M, et al. Enhanced gas barrier and anticorrosion performance of boric acid induced cross-linked poly(vinyl alcohol-co-ethylene)/graphene oxide film[J]. Carbon,2018,133:150-161. doi: 10.1016/j.carbon.2018.03.036
    [44]
    YANG Z, GUO H, KANG C, et al. Enhanced gas barrier properties of polymer substrates for flexible OLEDs by adjusting the backbone rigidity and incorporating 2D nanosheets[J]. New Journal of Chemistry,2021,45(27):12945-12956.
    [45]
    NAM K H, KIM K, KIM S G, et al. Sustainable production of reduced graphene oxide using elemental sulfur for multifunctional composites[J]. Composites Part B Engineering,2019,176:107236. doi: 10.1016/j.compositesb.2019.107236
    [46]
    LIM J, YEO H, KIM S G, et al. Pyridine-functionalized graphene/polyimide nanocomposites: Mechanical, gas barrier, and catalytic effects[J]. Composites Part B Engi-neering,2017,114:280-288. doi: 10.1016/j.compositesb.2016.12.057
    [47]
    LIN Y, LIU S, PENG J, et al. Constructing a segregated graphene network in rubber composites towards improved electrically conductive and barrier properties[J]. Composites Science & Technology,2016,131:40-47. doi: 10.1016/j.compscitech.2016.05.012
    [48]
    LUO Y, WU Y, LUO K, et al. Structures and properties of alkanethiol-modified graphene oxide/solution-polymerized styrene butadiene rubber composites: Click chemistry and molecular dynamics simulation[J]. Composites Science and Technology,2018,161:32-38. doi: 10.1016/j.compscitech.2018.03.036
    [49]
    RAEF M, RAZZAGHI-KASHANI M. The role of interface in gas barrier properties of styrene butadiene rubber-reduced graphene oxide composites[J]. Polymer,2019,182:121816. doi: 10.1016/j.polymer.2019.121816
    [50]
    ZHAO L, SUN H, KIM N, et al. Hydrogen gas barrier pro-perty of polyelectrolyte/GO layer-by-layer films[J]. Jour-nal of Applied Polymer Science,2015,132(20):41973.
    [51]
    PARK W B, BANDYOPADHYAY P, NGUYEN T T, et al. Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties[J]. Compo-sites Part B Engineering,2016,106:316-323. doi: 10.1016/j.compositesb.2016.09.048
    [52]
    WU Y H, LIN Y, WEI Y, et al. Constructing interconnected graphene network in fluoroelastomer composites by F-H polar interaction for enhanced mechanical and barrier properties[J]. Composites Science and Technology,2017,148:35-42. doi: 10.1016/j.compscitech.2017.05.014
    [53]
    LIU M F, CATAIDI P, YOUNG R J, et al. High-performance fluoroelastomer-graphene nanocomposites for advanced sealing applications[J]. Composites Science and Technology,2021,202:108592. doi: 10.1016/j.compscitech.2020.108592
    [54]
    BANDYOPADHYAY P, NGUYEN T T, LI X, et al. Enhanced hydrogen gas barrier performance of diaminoalkane functionalized stitched graphene oxide/polyurethane compo-sites[J]. Composites Part B Engineering,2017, 117:101-110.
    [55]
    LI X, BANDYOPADHYAY P, KSHETRI T, et al. Novel hydroxylated boron nitride functionalized p-phenylenediamine-grafted graphene: An excellent filler for enhancing the barrier properties of polyurethane[J]. Journal of Materials Chemistry A,2018,6(43):21501-21515. doi: 10.1039/C8TA08351G
    [56]
    FEIJANI E, TAVASSOLI A, MAHDAVI H, et al. Effective gas separation through graphene oxide containing mixed matrix membranes[J]. Journal of Applied Polymer Science,2018,135:46271. doi: 10.1002/app.46271
    [57]
    LI J, WANG S, LAI L, et al. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets[J]. Carbon,2021,172(9):31-40.
    [58]
    SUNG S J, PARK J, CHO Y S, et al. Enhanced gas barrier property of stacking-controlled reduced graphene oxide films for encapsulation of polymer solar cells[J]. Carbon,2019,150:275-283. doi: 10.1016/j.carbon.2019.04.120
    [59]
    GHANEM A F, YASSIN M A, RABIE A M, et al. Investigation of water sorption, gas barrier and antimicrobial properties of polycaprolactone films contain modified graphene[J]. Journal of Materials Science,2021,56(1):497-512. doi: 10.1007/s10853-020-05329-4
    [60]
    WANG C, GE X, JIANG Y. Synergistic effect of graphene oxide/montmorillonite-sodium carboxymethycellulose ter-nary mimic-nacre nanocomposites prepared via a facile evaporation and hot-pressing technique[J]. Carbohydrate Polymers,2019,222:115026. doi: 10.1016/j.carbpol.2019.115026
    [61]
    MIANEHROW H, LO RE G, CAROSIO F, et al. Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) nanocomposites due to GO-induced CNF ordering[J]. Journal of Materials Chemistry A,2020,8(34):17608-17620. doi: 10.1039/D0TA04406G
    [62]
    RAMEZANI H, BEHZAD T, BAGHERI R. Synergistic effect of graphene oxide nanoplatelets and cellulose nanofibers on mechanical, thermal, and barrier properties of thermoplastic starch[J]. Polymers for Advanced Technologies,2020,31(3):553-565. doi: 10.1002/pat.4796
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (842) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return