Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001
Citation: TIAN Li, LI Yan, WU Jieling, et al. Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3347-3355. doi: 10.13801/j.cnki.fhclxb.20210818.001

Preparation, characterization and photoluminescence of Zn2+/GaOOH nanowires

doi: 10.13801/j.cnki.fhclxb.20210818.001
  • Received Date: 2021-06-07
  • Accepted Date: 2021-07-31
  • Rev Recd Date: 2021-07-18
  • Available Online: 2021-08-18
  • Publish Date: 2022-07-30
  • Gallium oxide hydroxide (GaOOH) is a kind of semiconductor material with broad-band gap and has extensive potential applications in the fields such as photocatalytic degradation of organic dyes, direct methanol fuel cell, lithium ion battery, bioluminescent imaging and so on. In our study, Zn2+/GaOOH nanowires have been synthesized via a facile and controllable hydrothermal method with zinc acetate and gallium nitrate as reactants and ethylenediaminetetraacetic acid disodium salt (Na2Y) as template. The products were characterized by XRD、SEM、HRTEM and EDS techniques. The length of the as-prepared uniform Zn2+/GaOOH nanowires is up to several micrometers and the diameter is about 100 nm. Zn2+/GaOOH is single crystalline and grew along crystalline direction <110>. The phase and morphology of Zn2+/GaOOH are affected by reactants and their amounts. Keeping the reactant amount of 1.5 mmol gallium nitrate stand, Zn2+/GaOOH nanowires form with 1.0 mmol zinc acetate and 1.0-1.7 mmol Na2Y, while spinel ZnGa2O4 nanoparticles obtain with 0.5 mmol Na2Y. When the reactant amount of zinc acetate is changed to 2.0 mmol, only spinel ZnGa2O4 nanoparticles can be obtained with the reactant amount of 1.5 mmol gallium nitrate. The detail of the effects of the products by Zn∶Ga∶Y mole ratios on the phase and morphology was studied, showing the forming condition of phase-pure and uniform Zn2+/GaOOH nanowires with the Zn∶Ga∶Y mole ratio of 2∶3∶3. The result of photoluminescence determination shows that Zn2+/GaOOH nanowires exhibit strong PL emission in the blue-green wavelength range, attribute to the recombination of the defect-related excitations through an excitation-excitation collision process. The strongest PL emission is at 469 nm with the excitaton of 214 nm. The intensity of the emission peak at 469 nm rises with the blue-transiton of excitation wavelength. Zn2+/GaOOH nanowires show higher intensity of the emission peak at 469 nm by the excitation wavelength of 226 nm, accompany with ZnGa2O4 nanoparticles, indicating more excellent photoluminescence performance.

     

  • loading
  • [1]
    HUANG M H, WU Y Y, FERCK H, et al. Catalytic growth of zinc oxide nanowiresby vapor transport[J]. Advanced Materials,2001,13(2):113-116. doi: 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
    [2]
    TIAN L, CHEN L. Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires[J]. Journal of Central South University. 2014, 21: 477-481.
    [3]
    辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):251-261.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self- supported graphene composite with excellent cycling stability[J]. Acta Materiae Composi-tae Sinica,2021,38(4):251-261(in Chinese).
    [4]
    TIAN L, SUN Q L, XU X J, et al. Controlled synthesis and formation mechanism of monodispersive lanthanum vanadate nanowires with monoclinic structure[J]. Journal of Solid State Chemistry,2013,200:123-127. doi: 10.1016/j.jssc.2013.01.039
    [5]
    XU L, SU Y, ZHOU Q, et al. Self-assembled catalyst growth and optical properties of single-crystalline ZnGa2O4 nanowires[J]. Crystal Growth & Design. 2007, 7(4): 810-814.
    [6]
    KIM H S, HWANG S O, MYUNG Y, et al. Three-dimensional structure of helical and zigzagged nanowires using electron tomography[J]. Nano Letters,2008,8(2):551-557. doi: 10.1021/nl072829i
    [7]
    ADAMS T W, VINUEZA N R, ROMANYUK O, et al. Nanostructured GaOOH modifified with reactive yellow, red and blue water-soluble dyes[J]. AIP Advances,2019,9:025005. doi: 10.1063/1.5080353
    [8]
    MURUGANANDHAM M, SURI R, SILLANPA M, et al. Catalytic activity evaluation of mesoporous α-GaOOH microspheres self-assembly[J]. Journal of Industrial and Engi-neering Chemistry,2015,26:348-353. doi: 10.1016/j.jiec.2014.12.008
    [9]
    HUANG P Q, LUAN J F. Structure and photocatalytic performance of rice husk-like Ba-doped GaOOH under light irradiation [J]. RSC Advances, 2019, 9: 19930-19939.
    [10]
    MURUGANANDHAM M, SURI R, ABDEL WAHED M S M, et al. Solvothermal synthesis of mesoporous α-GaOOH semi-nanospheres[J]. Materials Letters,2013,111:137-139. doi: 10.1016/j.matlet.2013.08.071
    [11]
    CHEN K, HE C, GUO D, et al. Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays[J]. Journal of Alloys and Compounds,2018,755:199-205. doi: 10.1016/j.jallcom.2018.04.219
    [12]
    LIANG H F, MENG F, LAMB B K, et al. Solution growth of screw dislocation driven α-GaOOH nanorod arrays and their conversion to porous ZnGa2O4 nanotubes [J]. Chemi-cal Materials, 2017, 29: 7278-7287.
    [13]
    HSU Y H, NGUYEN A T, CHIU Y H, et al. Au-decorated GaOOH nanorods enhanced the performance of directmethanol fuel cells under light illumination[J]. Applied Catalysis B: Environmental,2016,185:133-140. doi: 10.1016/j.apcatb.2015.11.049
    [14]
    FENG J J, FU B, FANG L, et al. Uniform gallium oxyhydro-xide nanorod anodes with superior lithium-ion storage[J]. RSC Advances,2019,9:34896-34901. doi: 10.1039/C9RA07064H
    [15]
    ZHENG Y N, FAN M, LI K, et al. Ultraviolet-induced Ostwald ripening strategy towards a mesoporous Ga2O3/GaOOH heterojunction composite with a controllable structure for enhanced photocatalytic hydrogen evolution[J]. Catalysis Science & Technology,2020,10:2882-2892.
    [16]
    PRAKASAM B, LAHTINEN M, MURUGANANDHAM M, et al. Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3[J]. Materials Letters,2015,158:370-372. doi: 10.1016/j.matlet.2015.05.044
    [17]
    LERTANANTAWONG B, RICHES J D, MULLANE A P O. Room temperature electrochemical synthesis of crystalline GaOOH nanoparticles from expanding liquid metals[J]. Langmuir, 2018, 34(26): 7604-7611.
    [18]
    XU X, BI K, HUANG K, et al. Controlled fabrication of α-GaOOH with a novel needle-like submicrontubular structure and its enhanced photocatalytic performance[J]. Journal of Alloys and Compounds,2015,644:485-490. doi: 10.1016/j.jallcom.2015.03.088
    [19]
    SHI L, ZHANG J, WU S, et al. Phase evolution of Ga2O3 produced from morphology-controllable α-GaOOH nanocrystals [J]. Journal of the American Ceramic Society, 2014, 97(8): 2607-2614.
    [20]
    SUN M, LI D Z, ZHANG W J, et al. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds[J]. Nanotechnology,2010,21(35):355601. doi: 10.1088/0957-4484/21/35/355601
    [21]
    KREHULA S, RISTIC M, KUBUKI S, et al. The formation and microstructural properties of uniform α-GaOOH particles and their calcination products[J]. Journal of Alloys and Compounds,2015,620:217-227. doi: 10.1016/j.jallcom.2014.09.134
    [22]
    TIAN L, LI Y, WANG H F, et al. Controlled preparation and self-assembly of NdVO4 nanocrystals[J]. Journal of Rare Earths,2018,36:179-183. doi: 10.1016/j.jre.2017.04.010
    [23]
    TIAN L, CHENS M, LIU Q, et al. Effect of Eu3+-doping on morphology and fluorescent properties of neodymium vanadate nanorod-arrays[J]. Transactions Nonferrous Metals Society of China,2020,30:1031-1037. doi: 10.1016/S1003-6326(20)65274-8
    [24]
    田俐, 刘强, 李岩. 一种GaOOH, Zn2+一维纳米材料的制备方法: 中国专利, ZL 201910233072.3[P]. 2021-02-02.

    TIAN Li, LIU Qiang, LI Yan. A preparation method of a one-dimension nanomaterials GaOOH, Zn2+: Chinese patent, ZL 201910233072.3[P]. 2021-02-02 (in Chinese).
    [25]
    WU S, ZHANG J, SHI L, et al. Template-free synthesis of α-GaOOH hyperbranched nanoarchitectures via crystal splitting and their optical properties[J]. RSC Advances,2014,4:8209-8215. doi: 10.1039/c3ra46931j
    [26]
    PEI L Z, QUAN Y, FANG D, et al. Synthesis and characterization of gallium oxide nanowires via a hydrothermal me-thod[J]. Materials Chemistry and Physics,2010,121(1-2):142-146. doi: 10.1016/j.matchemphys.2010.01.009
    [27]
    梁建, 王晓斌, 张艳, 等. GaOOH和Ga2O3的制备及光学性能研究[J]. 人工晶体学报, 2013, 42(5):804-814. doi: 10.3969/j.issn.1000-985X.2013.05.006

    LIANG Jian, WANG Xiaobin, ZHANG Yan, et al. Synthesis and optical properties of GaOOH and Ga2O3[J]. Journal of Synthetic Crystals,2013,42(5):804-814(in Chinese). doi: 10.3969/j.issn.1000-985X.2013.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1062) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return