Volume 39 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WANG Zhen, ZHAO Zhigao, YIN Xueqin. An acoustic metasurface composed by unidirectional fiber composite materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3339-3346. doi: 10.13801/j.cnki.fhclxb.20210816.003
Citation: WANG Zhen, ZHAO Zhigao, YIN Xueqin. An acoustic metasurface composed by unidirectional fiber composite materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3339-3346. doi: 10.13801/j.cnki.fhclxb.20210816.003

An acoustic metasurface composed by unidirectional fiber composite materials

doi: 10.13801/j.cnki.fhclxb.20210816.003
  • Received Date: 2021-06-15
  • Accepted Date: 2021-08-03
  • Rev Recd Date: 2021-07-14
  • Available Online: 2021-08-17
  • Publish Date: 2022-07-30
  • Acoustic metasurfaces are artificial materials of subwavelength thickness capable of manipulating reflection, transmission and absorption of acoustic waves. Acoustic metasurfaces have important values for space limi-ted application fields. At present, the strategy for the design of acoustic metasurfaces depends on the metamaterials. Therefore, we proposed a scheme by designing a kind of non-metamaterials acoustic metasurface to manipulate the wavefont in fluids. Based on this idea, a new type of reflection acoustic metasurface composed by the unidirectional fiber composites with periodicity was studied. Through homogenization theory and optimization method of micromechanics the fractions of composites unit cells were designed in order to obtain the effective mechani-cal and acoustics prosperities of unit cells to satisfy the densities and longitudinal velocities of discrete metasurfaces needed, as well as the impedance matching condition. Finally, the gradient longitudinal velocity of the acoustic metasurfaces needed was achieved. Using Bloch-Floquet analysis, the relationship between longitudinal velocity and frequency was studied. The band diagrams exhibit the broadband characteristics of the designed metasurfaces. Simulations of reflection control were studied for the designed metasurfaces with normally incident plan wave. Excellent wavefont manipulation effects were observed in broadband frequencies. Accordingly, it is verified that longitudinal modes are the most important factors for wave manipulation under normally incident waves. The research work provides a novel idea and potential method for the design and physical implementation of the acoustic metasurfaces as well as the other acoustic wave manipulation devices.

     

  • loading
  • [1]
    ZHAO J J, LI B W, CHEN Z N, et al. Redirection of sound waves using acoustic metasurface[J]. Applied Physics Letters,2013,103(15):151604. doi: 10.1063/1.4824758
    [2]
    ZHAO J J, LI B W, CHEN Z N, et al. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection[J]. Scientific Reports,2013,3:2537. doi: 10.1038/srep02537
    [3]
    LI Y, LIANG B, ZHONG M G, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific Reports,2013,3:2546. doi: 10.1038/srep02546
    [4]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337. doi: 10.1126/science.1210713
    [5]
    LI Y, JIANG X, LI R Q, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces[J]. Physical Review Applied,2014,2(6):064002. doi: 10.1103/PhysRevApplied.2.064002
    [6]
    MEI J, WU Y. Controllable transmission and total refection through an impedance -matched acoustic metasurface[J]. New Journal of Physics,2014,16:123007. doi: 10.1088/1367-2630/16/12/123007
    [7]
    李勇. 声学超构表面[J]. 物理, 2017, 46(11):721-730. doi: 10.7693/wl20171102

    LI Yong. Acoustic metasurface[J]. Physics,2017,46(11):721-730(in Chinese). doi: 10.7693/wl20171102
    [8]
    ASSOUAR B, LIANG B, WU Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials,2018,3:460-472. doi: 10.1038/s41578-018-0061-4
    [9]
    朱一凡, 梁彬, 程建春. 广义斯奈尔定律与声超表面[J]. 应用声学, 2018, 37(1):53-62. doi: 10.11684/j.issn.1000-310X.2018.01.008

    ZHU Yifan, LIANG Bin, CHENG Jianchun. The generalized Snell’s law and acoustic metasurfaces[J]. Journal of Applied Acoustics,2018,37(1):53-62(in Chinese). doi: 10.11684/j.issn.1000-310X.2018.01.008
    [10]
    温激鸿, 蔡力, 郁殿龙, 等. 声学超材料基础理论与应用[M]. 北京: 科学出版社, 2018: 34−37.

    WEN Jihong, CAI Li, YU Dianlong, et al. Theory and applica-tions of acoustics metamaterials[M]. Beijing: Science Press, 2018: 34−37(in Chinese).
    [11]
    田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19):194301-12. doi: 10.7498/aps.68.20190850

    TIAN Yuan, GE Hao, LU Minghui, et al. Research advances in acoustic metamaterials[J]. Acta hysica Sinica,2019,68(19):194301-12(in Chinese). doi: 10.7498/aps.68.20190850
    [12]
    XIE Y B, WANG W Q, CHEN H Y, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications,2014,5:5553. doi: 10.1038/ncomms6553
    [13]
    LI Y, BADREDDINE M A. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters,2016,108:063502. doi: 10.1063/1.4941338
    [14]
    MA G C, YANG M, XIAO S W, et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials,2014,13:873-878. doi: 10.1038/nmat3994
    [15]
    ZHU X H, LI J F, SHEN C, et al. Non-reciprocal acoustic transmission via space-time modulated membranes[J]. Applied Physics Letters,2020,116(3):034101. doi: 10.1063/1.5132699
    [16]
    TIAN Y, WEI Q, CHENG Y, et al. Broadband manipulation of acoustic wavefronts by pentamode metasurface[J]. Applied Physics Letters,2015,107(22):221906. doi: 10.1063/1.4936762
    [17]
    CHEN Y, HU G K. Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves[J]. Physical Review Applied,2019,12(4):044046. doi: 10.1103/PhysRevApplied.12.044046
    [18]
    LIU Y, LI Y F, LIU X Z. Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials[J]. Chinese Physics B,2019,28(2):306-312.
    [19]
    CHU Y Y, WANG Z H, XU Z. Broadband high-efficiency controllable asymmetric propagation by pentamode acoustic metasurface[J]. Physics Letters A,2020,384(11):26230.
    [20]
    ZHANG X D, CHEN H, ZHAO Z G, et al. Experimental demonstration of a broadband waterborne acoustic meta-surface for shifting reflected waves[J]. Journal of Applied Physics,2020,127(17):174902. doi: 10.1063/1.5139008
    [21]
    SU X S, NORRIS A N, CUSHING C W, et al. Broadband focusing of underwater sound using a transparent pentamode lens[J]. The Journal of the Acoustical Society of America,2017,14(6):4408.
    [22]
    陈毅, 刘晓宁, 向平, 等. 五模材料及其水声调控研究[J]. 力学进展, 2016, 46:382.

    CHEN Yi, LIU Xiaoning, XIANG Ping, et al. Pentamode material for underwater acoustic wave control[J]. Advances in Mechanics,2016,46:382(in Chinese).
    [23]
    ZHU Y F, FAN X D, LIANG B, et al. Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing[J]. AIP Advances,2016,6(12):121702. doi: 10.1063/1.4968607
    [24]
    MILTON G W, CHERKAEV A V. Which elasticity tensors are realizable?[J]. Journal of Engineering Materials and Technology,1995,117:483-493. doi: 10.1115/1.2804743
    [25]
    DONG H W, ZHAO S D, MIAO X B, et al. Customized broadband pentamode metamaterials by topology optimization[J]. Journal of the Mechanics and Physics of Solids,2021,152:104407. doi: 10.1016/j.jmps.2021.104407
    [26]
    CAI X, Wang L, ZHAO Z G, et al. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters[J]. Applied Phy-sics Letters,2016,109(13):131904. doi: 10.1063/1.4963818
    [27]
    郝潇潇, 王真, 赵志高. 五模声学超表面理论分析与定向反射声学仿真[J]. 应用声学, 2021, 40(6): 904−910.

    HAO Xiaoxiao, WANG Zhen, ZHAO Zhigao. Theory analysis and acoustics simulation of reflection pentamode acoustic metasurface[J]. Journal of Applied Acoustics, 2021, 40(6): 904−910(in Chinese).
    [28]
    程建春. 声学原理[M]. 北京: 科学出版社, 2019: 89.

    CHENG Jianchun. Acoustics theory[M]. Beijing: Science Press, 2019: 89(in Chinese).
    [29]
    杜功焕. 声学基础[M]. 南京: 南京大学出版社, 2012: 520 − 526.

    DU Gonghuan. Acoustics Theory[M]. Nanjing: Nanjing University Press, 2012: 520 − 526(in Chinese).
    [30]
    陈烈民, 杨宝宁. 复合材料的力学分析[M]. 北京: 中国科学技术出版社, 2006: 88−91.

    CHEN Liemin, YANG Baoning. Mechanics analysis of composite materials[M]. Beijing: China Science and Technology Press, 2006: 88−91(in Chinese).
    [31]
    黄富华. 周期性复合材料有效性能的均匀化计算[D]. 哈尔滨: 哈尔滨工业大学, 2010: 26.

    HUANG Fuhua. Homogenizated numeration of effective properties for composite material with periodicity[D]. Harbin: Harbin Institute of Technology, 2010: 26(in Chinese).
    [32]
    顾伯洪, 孙宝忠. 纺织复合材料设计[M]. 上海: 东华大学出版社, 2018: 132−133.

    GU Bohong, SUN Baozhong. Design of textile composites[M]. Shanghai: Donghua University Press, 2018: 132−133(in Chinese).
    [33]
    UGRAY Z, LASDON L, PLUMMER J, et al. Scatter search and local NLP solvers: a multistart framework for global optimization[J]. INFORMS Journal on Computing. 2007, 19(3): 328−340.
    [34]
    梁军, 方国东. 三维编织复合材料力学性能分析方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013: 17−24.

    LIANG Jun, FANG Guodong. Mechanical analysis method of 3d braided composites[M]. Harbin: Harbin Institute of Thechnology Press, 2013: 17−24(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (875) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return