XU Jiajing, ZHU Peng, QU Wenjun. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2318-2328. DOI: 10.13801/j.cnki.fhclxb.20210809.001
Citation: XU Jiajing, ZHU Peng, QU Wenjun. Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2318-2328. DOI: 10.13801/j.cnki.fhclxb.20210809.001

Fatigue behaviors of steel bars-GFRP bars reinforced concrete beams

More Information
  • Received Date: May 10, 2021
  • Revised Date: July 09, 2021
  • Accepted Date: July 14, 2021
  • Available Online: August 08, 2021
  • Steel bars-glass fiber-reinforced polymer (GFRP) bars reinforced concrete (RC) beams combined the advantages of steel bars and GFRP bars. Flexural capacity was increased compared with RC beams and serviceability performance was improved compared with the pure fiber-reinforced polymer (FRP) reinforced concrete beams, however, the investigation of fatigue behaviors was limited. In this study, seven beams were fabricated for fatigue tests, and the test parameters were load amplitude, effective reinforcement ratio and area ratio of FRP to steel bars (Af/As). The test results show that fatigue failure of the steel bars-GFRP bars RC beams start with fatigue fracture of steel bars and the fracture surface is significantly different from that of static tensile failure modes. Plane section assumption is verified under fatigue. The fatigue load amplitude has significant effects on the fatigue life. With the increase of fatigue load amplitude, strains in steel bars, GFRP bars and concrete increases, and the fatigue life decrease. The increase of effective reinforcement ratio contribute to decreasing mid-span deflection and crack width, and improve the serviceability. The increase of area ratio of FRP to steel bars (Af/As) has negative effects on the fatigue behaviors of steel bars-GFRP bars RC beams. The fatigue life decrease from 366 thousand cycles to 83 thousand cycles with Af/As increasing from 0.25 to 2.0. Different theoretical models for the mid-span deflection of beams under fatigue load are compared and the CEB-FIP 2010 presented satisfactory prediction, and thus is recommended.
  • [1]
    叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. DOI: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). DOI: 10.3321/j.issn:1000-131X.2006.03.004
    [2]
    祁德庆, 钱文军, 薛伟辰. 土木工程用FRP筋的耐久性研究进展[J]. 玻璃钢/复合材料, 2006(2):47-50.

    QI Deqing, QIAN Wenjun, XUE Weichen. Progress of stu-dies on durability of FRP rods used in civil engineering[J]. Composites Science and Engineering,2006(2):47-50(in Chinese).
    [3]
    屈文俊, 张誉. 混凝土桥梁的耐久性维护方法[J]. 铁道学报, 2001(1):98-102. DOI: 10.3321/j.issn:1001-8360.2001.01.021

    QU Wenjun, ZHANG Yu. Method for durability main-tenance of concrete bridge[J]. Journal of the China Railway Society,2001(1):98-102(in Chinese). DOI: 10.3321/j.issn:1001-8360.2001.01.021
    [4]
    CHEN L, QU W J, ZHU P. Life cycle analysis for concrete beams designed with cross sections of equal durability[J]. Structural Concrete,2016,17(2):274-286. DOI: 10.1002/suco.201400117
    [5]
    QU W J, ZHANG X L, HUANG H Q. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars[J]. Journal of Composites for Construction,2009,13(5):350-359. DOI: 10.1061/(ASCE)CC.1943-5614.0000035
    [6]
    GU X Y, DAI Y Q, JIANG J W. Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods[J]. Engi-neering Structures,2020,206:110117. DOI: 10.1016/j.engstruct.2019.110117
    [7]
    QIN R Y, ZHOU A, LAU D. Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams[J]. Composites Part B,2017,108:200-209. DOI: 10.1016/j.compositesb.2016.09.054
    [8]
    GE W J, ZHANG J W, CAO D F, et al. Flexural behaviors of hybrid concrete beams reinforced with BFRP and steel bars[J]. Construction and Building Materials,2015,87:28-37. DOI: 10.1016/j.conbuildmat.2015.03.113
    [9]
    RUAN X J, LU C H, XU K, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures,2020,235:111772. DOI: 10.1016/j.compstruct.2019.111772
    [10]
    徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9):2348-2357.

    XU Ke, LU Chunhua, XUAN Guangyu, et al. Experimenatl and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica,2020,37(9):2348-2357(in Chinese).
    [11]
    Comite Euro-International Du Beton. Fatigue of concrete structures: State of the art report[R]. Dubrovnik: CEB, 1988.
    [12]
    朱鹏, 许家婧, 屈文俊. 混合配筋混凝土梁抗弯疲劳试验[J]. 建筑科学与工程学报, 2019, 36(4):55-62. DOI: 10.3969/j.issn.1673-2049.2019.04.007

    ZHU Peng, XU Jiajing, QU Wenjun. Experiment on fatigue flexural behaviors of hybrid reinforced concrete beams[J]. Journal of Architecture and Civil Engineering,2019,36(4):55-62(in Chinese). DOI: 10.3969/j.issn.1673-2049.2019.04.007
    [13]
    YOUNES T, AL-MAYAH A, TOPPER T. Fatigue perfor-mance of prestressed concrete beams using BFRP bars[J]. Construction and Building Materials,2017,157:313-321. DOI: 10.1016/j.conbuildmat.2017.09.086
    [14]
    LI L J, HOU B, LU Z Y, et al. Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars[J]. Construction and Building Materials,2018,179:160-171. DOI: 10.1016/j.conbuildmat.2018.05.218
    [15]
    ATUTIS E, VALIVONIS J, ATUTIS M. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers under cyclic load[J]. Composite Structures,2018,183:389-396. DOI: 10.1016/j.compstruct.2017.03.106
    [16]
    中国国家标准化管理委员会. 金属材料拉伸试验 第1部分—室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Metallic materials tensile testing-Part 1-Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [17]
    中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Standardization Administration of the People's Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: China Architecture & Building Press, 2013(in Chinese).
    [18]
    中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2002(in Chinese).
    [19]
    ACI Committee 215. Considerations for design of concrete structures subjected to fatigue loading ACI 215R-74[R]. Detroit: ACI Committee, 1974.
    [20]
    庞蕾, 屈文俊, 李昂. 混合配筋混凝土梁抗弯计算理论[J]. 中国公路学报, 2016, 29(7):81-88. DOI: 10.3969/j.issn.1001-7372.2016.07.010

    PANG Lei, QU Wenjun, LI Ang. Calculation of flexural strength for concrete beams reinforced with hybrid (FRP and steel) bars[J]. China Journal of Highway and Transport,2016,29(7):81-88(in Chinese). DOI: 10.3969/j.issn.1001-7372.2016.07.010
    [21]
    BALAGURU P N, SHAH S P, NAAMAN A E. Fatigue beha-vior and design of ferrocement beams[J]. Journal of the Structural Division,1979,105(7):1333-1346. DOI: 10.1061/JSDEAG.0005194
    [22]
    SHAH S P. Predictions of comulative damage for concrete and reinforced concrete[J]. Matériaux et Construction,1984,17(1):65-68.
    [23]
    LOVEGROVE J, EL DIN A S, DAOUD O. Fatigue crack growth in the tension steel of reinforced concrete[J]. Fatigue & Fracture of Engineering Materials & Structures,1979,1(2):173-183.
    [24]
    International Federation for Structural Concrete (fib). Model code for concrete structures 2010: CEB-FIP 2010[S]. Lausanne, Switzerland: Thomas Telford Ltd., 2010.
  • Related Articles

    [1]LUO Peidong, ZHAO Cheng, LUO Qiuping, ZHANG Qiang, YAN Feifei. Preparation and application of micron-sized ZnS-Qds@ polysiloxane core-shell light diffusion hybrid microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1438-1445. DOI: 10.13801/j.cnki.fhclxb.20220516.005
    [2]HOU Gaoyuan, LI Guanhui, HU Zhaoxiang, LI Yujie, ZHANG Dejian, CUI Jinyi, FANG Zhiqiang. Preparation, properties and application of highly hazy and transparent cellulose films for solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1907-1923. DOI: 10.13801/j.cnki.fhclxb.20210609.002
    [3]XU Shihua, FANG Yiqun, WANG Qingwen. Non-isothermal crystallization kinetics of wood powder/low melting point polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2218-2223. DOI: 10.13801/j.cnki.fhclxb.20200902.002
    [4]JIA Lingping, CHEN Zuoyan, WANG Yingping, AN Xingcai. Adsorption and photocatalytic properties of V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 693-700. DOI: 10.13801/j.cnki.fhclxb.20180704.001
    [5]SUN Zhipeng, WANG Huashan, HAN Shixin. Preparation and transmittance of nano-SiO2/PMMA transparent composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1423-1429. DOI: 10.13801/j.cnki.fhclxb.20161024.006
    [6]ZHENG Jingzhi, ZHOU Xingping, XIE Xiaolin. Non-isothermal crystallization kinetics of polypropylene containing silica hybrid particles as fillers[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 18-23.
    [7]LIU Jianhua, ZHAO Liang, LI Songmei, HU Jianping, GONG Zhaohe. Effect of salt spray on mechanical properties of glass f iber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 18-22.
    [8]JI Guangming, TAO Jie, WANG Tao, YANG Bingpeng. INVESTIGATION ON THE MECHANICAL PROPERTIES OF NANO-TiO2/PP COMPOSITES[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 100-106.
    [9]ZHENG Shunxing, LI Cheng, FAN Zhenlu, HAN Zuoxiang, LU Zhaoping. PREPARATION AND TRANSMITTANCES OF TRANSPARENTSILICA/ PHENOLIC RESIN HYBRID MATERIALS[J]. Acta Materiae Compositae Sinica, 2005, 22(1): 22-26.
    [10]KOU Sheng-zhong, XU Guang-ji, DING Yu-tian, SU Pei-hua. KINETIC MECHANISM OF THE XD REACTION IN Al-TiO2-C SYSTEM[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 115-118.
  • Cited by

    Periodical cited type(1)

    1. 许敏,田晓锋,兰煜坤,魏士杰,王克飞. 锂离子电池组铜导电带的修饰及性能评估. 当代化工研究. 2024(23): 47-49 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1604) PDF downloads (87) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return