Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001
Citation: LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 467-477. doi: 10.13801/j.cnki.fhclxb.20210729.001

Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials

doi: 10.13801/j.cnki.fhclxb.20210729.001
  • Received Date: 2021-04-30
  • Accepted Date: 2021-07-09
  • Rev Recd Date: 2021-06-23
  • Available Online: 2021-07-29
  • Publish Date: 2022-02-01
  • Ti3C2TxMXene is a novel two-dimensional transition metal carbide with excellent properties, such as high electrical conductivity, remarkable mechanical properties and higher specific capacitance. Hence, Ti3C2Tx has great application prospects in the fields of energy storage, sensor, catalysis, membrane separation, microwave absorption, electromagnetic shielding and so on. However, the performance of monolayer two-dimensional materials on the nanoscale can’t be easy to be realized, unless it must be assembled into macroscopic materials, such as one-dimensional fiber, two-dimensional film and three-dimensional aerogel. Certain achievements and progress have also been made in the macroscopic assembly and application of Ti3C2Tx. The current preparation methods of Ti3C2Tx and the assembly methods of macroscopic Ti3C2Tx based materials and their related applications were summarized in this review. In addition, the research status of Ti3C2Tx at home and abroad and the research results in practical application were also introduced. Finally, the shortcomings in preparation, assembly and application process of Ti3C2Tx were commentated and the future development trend was forecasted.

     

  • loading
  • [1]
    SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials,2020,30:1910504. doi: 10.1002/adfm.201910504
    [2]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [3]
    ABDOLHOSSEINZADEH S, JIANG X, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today,2021,48:214-240. doi: 10.1016/j.mattod.2021.02.010
    [4]
    LIN P, XIE J, HE Y, et al. MXene aerogel-based phase change materials toward solar energy conversion[J]. Solar Energy Materials & Solar Cells,2020,206:110229.
    [5]
    WANG D, FANG Y, YU W, et al. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance[J]. Solar Energy Materials and Solar Cells,2021,220:110850. doi: 10.1016/j.solmat.2020.110850
    [6]
    LI X, BAI Y, SHI X, et al. Applications of MXene (Ti3C2Tx) in photocatalysis: A review[J]. Mateials Advance,2021,2:1570-1594.
    [7]
    XIONG D, SHI Y, YANG H Y. Rational design of MXene-based films for energy storage: Progress, prospects[J]. Materials Today,2021,46:183-211. doi: 10.1016/j.mattod.2020.12.004
    [8]
    SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2TxMXene fibers using a deformable MXene gel[J]. ACS Nano,2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255
    [9]
    TAHIR M, KHAN A A, TASLEEM S, et al. Titanium carbide (Ti3C2) MXene as a promising Co-catalyst for photocatalytic CO2 conversion to energy-efficient fuels: A review[J]. Energy & Fuels,2021,35(13):10374-10404. doi: 10.1021/
    [10]
    YANG E, JI H, KIM J, et al. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Physical Chemistry Chemical Physics,2015,17(7):5000. doi: 10.1039/C4CP05140H
    [11]
    WU Y, NIE P, JIANG J, et al. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries[J]. ChemElectroChem,2017,4(6):1560-1565. doi: 10.1002/celc.201700060
    [12]
    ZHENG L, HUA Q, LI X, et al. Investigation on the effect of Nb doping on the oxidation mechanism of Ti3SiC2[J]. Corrosion Science,2018,140(1):374-378.
    [13]
    NAGUIB M, KURTOGLU M, PRESSER V. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23 (37):4248- 4253. doi: 10.1002/adma.201102306
    [14]
    NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research,2015,48 (1):128-135. doi: 10.1021/ar500346b
    [15]
    ZHANG J, KONG N, UZUN S, et al. Scalable manufacturing of free-standing, strong Ti3C2TxMXene films with outstanding conductivity[J]. Advanced Materials,2020,32(23):2001093. doi: 10.1002/adma.202001093
    [16]
    WENG C, XING T, JIN H, et al. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105927. doi: 10.1016/j.compositesa.2020.105927
    [17]
    FENG A, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Titanium Compounds,2017,114:161-166.
    [18]
    LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie,2018,57 (21):6115-6119. doi: 10.1002/anie.201800887
    [19]
    ZHANG Z, CAI Z, ZHANG Y, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon,2020,174:482-499.
    [20]
    URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8 (22):11385-11391. doi: 10.1039/C6NR02253G
    [21]
    LI Y, SHAOH, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19:894-899. doi: 10.1038/s41563-020-0657-0
    [22]
    HORAK P, BAKARDJIEVA S, VACIK J, et al. Preparation of Ti2C MXene phase by ion beam sputtering and ion irradiation[J]. Nuclear Instruments and Methods in Physics Research,2020,469:49-51. doi: 10.1016/j.nimb.2020.02.010
    [23]
    PARK H, LEE K H, KIM Y B, et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport[J]. Science Advance,2018,4(11):eaau2104.
    [24]
    EOM W, PARK H, NOH S H, et al. Strengthening and stiffening graphene oxide fiber with trivalent metal ion binders[J]. Particle and Particle Systems Characterization,2017,34(9):1600401. doi: 10.1002/ppsc.201600401
    [25]
    ZHANG J, UZUN S, SEYEDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science,2020,6:254. doi: 10.1021/acscentsci.9b01217
    [26]
    WONSIK E, HWANSOO S, ROHAN B. et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communication,2020,11:2825. doi: 10.1038/s41467-020-16671-1
    [27]
    SRIVASTAVA P, MISHRA A, MIZUSEKI H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
    [28]
    KANG R G L, HANDOKO A D, NEMANI S K, et al. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion[J]. ACS Nano,2020,14(9):10834-10864. doi: 10.1021/acsnano.0c05482
    [29]
    LEES H, EOM W, SHIN H S, et al. Room-temperature, highly durable Ti3C2TxMXene/graphene, hybrid fibers for NH3 gas sensing[J]. ACS Applied Materials & Interfaces,2020,12:10434-10442.
    [30]
    ZHENG X H, NIE W Q, HU Q L, et al. Multifunctional RGO/Ti3C2TxMXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection-Science direct[J]. Materials & Design,2021,200:109442.
    [31]
    YANG Q, ZHEN X, BO F, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2017,5(42):22113-22119. doi: 10.1039/C7TA07999K
    [32]
    LI H, SHAO F, WEN X, et al. Graphene/MXene fibers-enveloped sulfur cathodes for high-performance Li-S batteries[J]. Electrochimica Acta,2021,371:137838. doi: 10.1016/j.electacta.2021.137838
    [33]
    SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353 (6304):1137. doi: 10.1126/science.aag2421
    [34]
    KIM S J, CHOI J, MALESKI K, et al. Interfacial assembly of ultrathin, functional MXene films[J]. ACS Applied Materials & Interfaces,2019,11(35):32320-32327.
    [35]
    TIAN W, VAHIDMOHAMMADI A, WANG Z, et al. Layer-by-layer self-assembly of pillared two-dimensional multilayers[J]. Nature Communications,2019,10(1):2558. doi: 10.1038/s41467-019-10631-0
    [36]
    ZHANG X F, LI X D, DONG S L, et al. Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors[J]. Applied Materials Today,2019,16:315-321. doi: 10.1016/j.apmt.2019.06.013
    [37]
    HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces,2017,9(23):20038-20045.
    [38]
    DENG B, WANG L, XIANG Z, et al. Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications[J]. Materials Letters,2021,284:129029. doi: 10.1016/j.matlet.2020.129029
    [39]
    MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal,2020,403:126438.
    [40]
    ZHENG S, WANG H, DAS P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advance Materials,2021,33(10):e2005449. doi: 10.1002/adma.202005449
    [41]
    ZHANG B, GU Q, WANG C, et al. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2TxMXene janus membrane for dual-functional enabled photothermal desalination[J]. ACS Applied Materials & Interfaces,2021,13 (3):3762-3770.
    [42]
    ROLISON D R, LONG J W, LYTLE J C, et al. Multifunctional 3D nanoarchitecturesfor energy storage and conversion[J]. Chemical Socity Reviews,2009,38(1):226-252.
    [43]
    LIN P, XIE J, HE Y, et al. MXene aerogel-based phase change materials toward solar energy conversion[J]. Solar Energy Materials and Solar Cells,2020,206:110229. doi: 10.1016/j.solmat.2019.110229
    [44]
    ZHANG L, BI J, ZHAO Z, et al. Sulfur@self-assembly 3D MXene hybrid cathode material for lithium-sulfur batteries[J]. Electrochimica Acta,2021,370:137759. doi: 10.1016/j.electacta.2021.137759
    [45]
    ORANGI J, TETIK H, PARANDOUSH P, et al. Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors[J]. Materials Today Advances,2021,9(28):100135.
    [46]
    YUE Y, LIU N, MA Y, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [47]
    LI L, ZHANG M, ZHANG X, et al. New Ti3C2 aergoel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of power Sources,2017,364:234241.
    [48]
    YU M, WANG Z, LIU J, et al. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities[J]. Nano Energy,2019,63:103880. doi: 10.1016/j.nanoen.2019.103880
    [49]
    YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181-190. doi: 10.1016/j.nanoen.2017.12.003
    [50]
    WANG Z, ZHANG N, YU M, et al. Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries[J]. Journal of Energy Chemistry,2019,37:183-191. doi: 10.1016/j.jechem.2019.03.012
    [51]
    LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic interference shielding[J]. Advanced Materials,2017,29 (38):1702367. doi: 10.1002/adma.201702367
    [52]
    LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2TxMXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. doi: 10.1016/j.cej.2019.123512
    [53]
    WANG L B, LIU H, LV X L. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogelwith excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2020,828:154251. doi: 10.1016/j.jallcom.2020.154251
    [54]
    SHAO L, XU J J, MA J Z, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials[J]. Composites Communications,2020,19:108-113. doi: 10.1016/j.coco.2020.03.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1293) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return