Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LI Zhongming, LI Bin, FENG Dong, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527. doi: 10.13801/j.cnki.fhclxb.20210708.002
Citation: LI Zhongming, LI Bin, FENG Dong, et al. Research progress of cathode materials for lithium-ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 513-527. doi: 10.13801/j.cnki.fhclxb.20210708.002

Research progress of cathode materials for lithium-ion battery

doi: 10.13801/j.cnki.fhclxb.20210708.002
  • Received Date: 2021-04-14
  • Accepted Date: 2021-06-30
  • Rev Recd Date: 2021-06-03
  • Available Online: 2021-07-08
  • Publish Date: 2022-02-01
  • Lithium-ion battery (LIB) has received considerable attention in recent years, mainly because LIB has higher energy density, power and efficiency compared with other rechargeable batteries. The cathode material plays an important role in determining the LIB performance (e.g, capacity, thermal stability, and potential) and is the main part of LIB system. This paper presents a systematic classification of LIB cathode materials, including mono-, binary-, and ternary-based lithium metal oxide and lithium iron phosphate cathode materials, and the advantages and disadvantages of these cathode materials are systematically reviewed. The physical properties of commercialized cathode materials are compared and evaluated for potential commercialization. Finally, the advantages and disadvantages of each cathode materials are summarized, and the challenges and prospects of cathode materials for the future application are discussed.

     

  • loading
  • [1]
    CHENG Q, HE W, ZHANG X, et al. Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: A review[J]. Journal of Materials Chemistry A,2017,5(22):10772-10797. doi: 10.1039/C7TA00034K
    [2]
    ZHANG L, WANG H, WANG L, et al. High electrochemical performance of lithium-rich Li1.2Mn0.54NixCoyO2 cathode materials for lithium-ion batteries[J]. Materials Letters,2016,185:100-103. doi: 10.1016/j.matlet.2016.08.118
    [3]
    GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy,2019,251:113343. doi: 10.1016/j.apenergy.2019.113343
    [4]
    KHARBACHI A, ZAVOROTYNSKA O, LATROCHE M, et al. Exploits, advances and challenges benefiting beyond Li-ion battery technologies[J]. Journal of Alloys and Compounds,2020,817:153261. doi: 10.1016/j.jallcom.2019.153261
    [5]
    CHEN R, ZHAO T, ZHANG X, et al. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics[J]. Nanoscale Horizons,2016,1(6):423-444. doi: 10.1039/C6NH00016A
    [6]
    ZHENG F, YANG C, XIONG X, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angewandte Chemie International Edition,2015,54(44):13058-13062. doi: 10.1002/anie.201506408
    [7]
    CHENG F, CHEN J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews,2012,41(6):2172-2192. doi: 10.1039/c1cs15228a
    [8]
    ALABOINA P K, UDDIN M J, CHO S J. Nanoprocess and nanoscale surface functionalization on cathode materials for advanced lithium-ion batteries[J]. Nanoscale,2017,9(41):15736-15752. doi: 10.1039/C7NR02600E
    [9]
    GUAN P, ZHOU L, YU Z, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry,2020,43:220-235. doi: 10.1016/j.jechem.2019.08.022
    [10]
    ISLAM M. S, FISHER C. A. J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews,2014,43(1):185-204. doi: 10.1039/C3CS60199D
    [11]
    ZHU P, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources,2021,485:229321. doi: 10.1016/j.jpowsour.2020.229321
    [12]
    HUANG B, PAN Z, SU X, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources,2018,399:274-286. doi: 10.1016/j.jpowsour.2018.07.116
    [13]
    HSIEH C, HSU H, HSU J, et al. Infrared-assisted synthesis of lithium nickel cobalt alumina oxide powders as electrode material for lithium-ion batteries[J]. Electrochimica Acta,2016,206:207-216. doi: 10.1016/j.electacta.2016.04.146
    [14]
    LI W. Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: Dissolution from cathodes, deposition on anodes and elimination strategies[J]. Journal of The Electrochemical Society,2020,167:090514. doi: 10.1149/1945-7111/ab847f
    [15]
    MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LiXCoO2 "(oless-thanxless-than-or-equal-to1)-A new cathode material for batteries of high-energy density[J]. Materials Research Bulletin,1980,15:783-789. doi: 10.1016/0025-5408(80)90012-4
    [16]
    LIU X, TAN Y, WANG W, et al. Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries[J]. Nano Letters,2020,20(6):4558-4565. doi: 10.1021/acs.nanolett.0c01413
    [17]
    LYU Y, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials,2021,11:2000982. doi: 10.1002/aenm.202000982
    [18]
    JI X, XIA Q, XU Y, et al. A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries[J]. Journal of Power Sources,2021,487:229362. doi: 10.1016/j.jpowsour.2020.229362
    [19]
    ZHU J, CAO G, LI Y, et al. Efficient utilisation of rod-like nickel oxalate in lithium-ion batteries: A case of NiO for the anode and LiNiO2 for the cathode[J]. Scripta Materialia,2020,178:51-56. doi: 10.1016/j.scriptamat.2019.10.051
    [20]
    KALYANI P, KALAISELVI N. Various aspects of LiNiO2 chemistry: A review[J]. Science and Technology of Advanced Materials,2005,6:689-703. doi: 10.1016/j.stam.2005.06.001
    [21]
    BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al. There and back again-The journey of LiNiO2 as a cathode active material[J]. Angewandte Chemie-International Edition,2019,58:10434-10458. doi: 10.1002/anie.201812472
    [22]
    VLIKANGAS J, LAINE P, HIETANIEMI M, et al. Precipitation and calcination of high-capacity LiNiO2 cathode material for lithium-ion batteries[J]. Applied Sciences,2020,10:8988. doi: 10.3390/app10248988
    [23]
    ZHU X, LIN T, ERIC M, et al. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries[J]. Journal of Nanoparticle Research,2018,20:160-200. doi: 10.1007/s11051-018-4235-1
    [24]
    YU R, ZHANG X, LIU T, et al. Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9:41210-41223.
    [25]
    ZHU X, MENG F, ZHANG Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries[J]. Nature Sustainability,2020,4(5):392-401.
    [26]
    TIAN Y, QIU Y, LIU Z, et al. LiMnO2@rGO nanocomposites for high-performance lithium-ion battery cathodes[J]. Nanotechnology,2020,32:015042.
    [27]
    SUSAI F A, TALIANKER M, LIU J, et al. Electrochemical activation of Li2MnO3 electrodes at 0 degrees C and its impact on the subsequent performance at higher tempera-tures[J]. Materials,2020,13:4388. doi: 10.3390/ma13194388
    [28]
    VEENA R, DINESH J A, RAMAN S, et al. Li and Mn-rich Li4Mn5O12-Li2MnO3 composite cathode for next generation lithium-ion batteries[J]. Journal of Energy Storage,2019,24:100754. doi: 10.1016/j.est.2019.04.028
    [29]
    SAROHA R, PANWAR A K, GAUR A, et al. Electrochemical studies of novel olivine-layered (LiFePO4-Li2MnO3) dual composite as an alternative cathode material for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2018,22:2507-2513. doi: 10.1007/s10008-018-3963-6
    [30]
    LIU D, SU Z, WANG L. Pyrometallurgically regenerated LiMn2O4 cathode scrap material and its electrochemical properties[J]. Ceramics International,2021,47:42-47. doi: 10.1016/j.ceramint.2020.06.037
    [31]
    ISHIZAWA N, TATEISHI K. Diffusion of Li atoms in LiMn2O4-A structural point of view[J]. Journal of the Ceramic Society of Japan,2009,117(1361):6-14. doi: 10.2109/jcersj2.117.6
    [32]
    LUO F, WEI C, ZHANG C, et al. Operando X-ray diffraction analysis of the degradation mechanisms of a spinel LiMn2O4 cathode in different voltage windows[J]. Journal of Energy Chemistry,2020,44:138-146. doi: 10.1016/j.jechem.2019.09.011
    [33]
    MARINCAS A, GOGA F, DORNEANU S, et al. Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2020,24:473-497. doi: 10.1007/s10008-019-04467-3
    [34]
    LIU Y, LIU G, XU H, et al. Low-temperature synthesized Li4Mn5O12-like cathode with hybrid cation- and anion-redox capacities[J]. Chemical Communications,2019,55:8118-8121. doi: 10.1039/C9CC02006C
    [35]
    ZHANG X, SHI J, LIANG J, et al. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J]. Advanced Materials,2018,30:1801751. doi: 10.1002/adma.201801751
    [36]
    PFLEGING W. Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing[J]. International Journal of Extreme Manufacturing,2020,3(1):012002. doi: 10.1088/2631-7990/abca84
    [37]
    AN Q, SUN X, GUO J, et al. Review-key strategies to increase the rate capacity of cathode materials for high power lithium-ion batteries[J]. Journal of The Electrochemical Society,2020,167:140528. doi: 10.1149/1945-7111/abc4bf
    [38]
    BELHAROUAK I, TSUKAMOTO H, AMINE K. LiNi0.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries[J]. Journal of Power Sources,2003,119:175-177.
    [39]
    LI B, WU C, HU D, et al. Copper extraction from the ammonia leach liquor of spent lithium ion batteries for regenerating LiNi0.5Co0.5O2 by co-precipitation[J]. Hydrometallurgy,2020,193:105310. doi: 10.1016/j.hydromet.2020.105310
    [40]
    ZHOU Y, LI H. Sol-gel template synthesis of highly ordered LiCo0.5Mn0.5O2 nanowire arrays and their structural properties[J]. Journal of Solid State Chemistry,2002,165:247-253. doi: 10.1006/jssc.2002.9512
    [41]
    MYUNG S T, KOMABA S, KUMAGAI N. Hydrothermal synthesis of orthorhombic LiCoxMn1−xO2 and their structural changes during cycling[J]. Journal of The Electrochemical Society,2002,149:A1349-A1357. doi: 10.1149/1.1504453
    [42]
    WANG H. LiNi0.5Mn1.5O4 cathodes for lithium ion batteries: A review[J]. Journal of Nanoscience and Nanotechnology,2015,15:6883-6890. doi: 10.1166/jnn.2015.10726
    [43]
    GAO C, LIU H, BI S, et al. Insight into the high-temperature cycling stability of a micro-nanostructured LiNi0.5Mn1.5O4/graphene composite cathode for high-voltage lithium-ion batteries[J]. Journal of Physical Chemistry C,2020,124:18847-18858. doi: 10.1021/acs.jpcc.0c02933
    [44]
    EIN-ELI Y, HOWARD W F, LU S H, et al. LiMn2−xCuxO4 spineis - 5 V cathode materials[J]. MRS Online Proceeding Library Archive,1997,496:315. doi: 10.1557/PROC-496-315
    [45]
    YAN W, YANG S, HUANG Y, et al. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds,2019,819:153048.
    [46]
    ZHAO X, WANG J, DONG X, et al. Structure design and performance of LiNixCoyMn1−xyO2 cathode materials for lithium-ion batteries: A review[J]. Journal of the Chinese Chemical Society,2014,61:1071-1083. doi: 10.1002/jccs.201400107
    [47]
    SHUAI H, LI J, HONG W, et al. Electrochemically modulated LiNi1/3Mn1/3Co1/3O2 cathodes for lithium-ion batteries[J]. Small Methods,2019,3:1900065. doi: 10.1002/smtd.201900065
    [48]
    ZENG T, ZHANG C. An effective way of co-precipitating Ni2+, Mn2+ and Co2+ by using ammonium oxalate as precipitant for Ni-rich Li-ion batteries cathode[J]. Journal of Materials Science,2020,55:11535-11544. doi: 10.1007/s10853-020-04753-w
    [49]
    WANG Y, CHENG T, YU Z, et al. Study on the effect of Ni and Mn doping on the structural evolution of LiCoO2 under 4.6 V high-voltage cycling[J]. Journal of Alloys and Compounds,2020,842:155827. doi: 10.1016/j.jallcom.2020.155827
    [50]
    KLEINER K, DIXON D, JAKES P, et al. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries[J]. Journal of Power Sources,2015,273:70-82. doi: 10.1016/j.jpowsour.2014.08.133
    [51]
    SAITO Y, SHIKANO M, KOBAYASHI H. State of charge (SOC) dependence of lithium carbonate on LiNi0.8Co0.15Al0.05O2 electrode for lithium-ion batteries[J]. Journal of Power Sources,2011,196:6889-6892. doi: 10.1016/j.jpowsour.2010.12.098
    [52]
    WATANABE S, KINOSHITA M, NAKURA K. Capacity fade of LiNi(1− xy)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1−xy)CoxAlyO= and Li CoO2 cathodes in cylindrical lithium-ion cells during long term storage test[[J]. Journal of Power Sources,2014,247:412-422. doi: 10.1016/j.jpowsour.2013.08.079
    [53]
    LI W, LIU X, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials,2018,8:1703154. doi: 10.1002/aenm.201703154
    [54]
    SHODAI T, OKADA S, TOBISHIMA, S, et al. Anode performance of a new layered nitride Li3−xCoxN (x=0.2–0.6)[J]. Journal of Power Sources,1997,68(2):515-518. doi: 10.1016/S0378-7753(97)02597-4
    [55]
    PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of The Electrochemical Society,1997,144:1188-1194. doi: 10.1149/1.1837571
    [56]
    QIN C, LI Y, LV S, et al. Enhancing electrochemical performance of LiFePO4 by vacuum-infiltration into expanded graphite for aqueous Li-ion capacitors[J]. Electrochimica Acta,2017,253:413-421. doi: 10.1016/j.electacta.2017.09.069
    [57]
    SHI M, LI R, LIU Y. In situ preparation of LiFePO4/C with unique copolymer carbon resource for superior perfor-mance lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,854:157162. doi: 10.1016/j.jallcom.2020.157162
    [58]
    WU Y, CHONG S, LIU Y, et al. Review on Li-insertion/extraction mechanisms of LiFePO4 cathode materials[J]. Chinese Journal of Structural Chemistry,2018,37:2011-2023.
    [59]
    SUN S, AN Q, TIAN Z, et al. Low-temperature synthesis of LiFePO4 nanoplates/C composite for lithium ion batteries[J]. Energy & Fuels,2020,34:11597-11605.
    [60]
    WEN L, HU X, LUO H, et al. Open-pore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries[J]. Particuology,2015,22:24-29. doi: 10.1016/j.partic.2014.11.002
    [61]
    ZHANG X, HE W, YUE Y, et al. Bio-synthesis participated mechanism of mesoporous LiFePO4/C nanocomposite microspheres for lithium ion battery[J]. Journal of Materials Chemistry,2012,22:19948-19956. doi: 10.1039/c2jm33425a
    [62]
    YILMAZ M, RAINA S, HSU S H, et al. Micropatterned arrays of vertically-aligned CNTs grown on aluminum as a new cathode platform for LiFePO4 integration in lithium-ion batteries[J]. Ionics,2019,25:421-427. doi: 10.1007/s11581-018-2651-y
    [63]
    FEY G T K, KUMAR P. Long-cycling coated LiCoO2 cathodes for lithium batteries-A review[J]. Journal of Industrial And Engineering Chemistry,2004,10:1090-1103.
    [64]
    SHAARI H R, SETHUPRAKHASH V. Review of electrochemical performance of LiNiO2 and their derivatives as cathode material for lithium-ion batteries[J]. Jurnal Teknologi,2014,70:7-13.
    [65]
    SASSIN M B, GREENBAUM S G, STALLWORTH P E, et al. Achieving electrochemical capacitor functionality from nanoscale LiMn2O4 coatings on 3-D carbon nanoarchitectures[J]. Journal of Materials Chemistry A,2013,1:2431-2440. doi: 10.1039/c2ta00937d
    [66]
    YI T, HAO C, YUE C, et al. A literature review and test: Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery[J]. Synthetic Metals,2009,159:1255-1260. doi: 10.1016/j.synthmet.2009.02.026
    [67]
    SHI X, HAN X, SHI X, et al. Synthesis and performance of LiMnO2 as cathodes for Li-ion batteries[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed,2003,18:5-8. doi: 10.1007/BF02838446
    [68]
    WANG J, SUN X. Olivine LiFePO4: The remaining challenges for future energy storage[J]. Energy & Environmental Science,2015,8:1110-1138.
    [69]
    MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives[J]. Advanced Energy Materials,2016,6:1501010. doi: 10.1002/aenm.201501010
    [70]
    ZHU C, SHU J, WU X, et al. Electrospun V2O5 micro/nano-rods as cathode materials for lithium ion battery[J]. Journal of Electroanalytical Chemistry,2015,759:184-189. doi: 10.1016/j.jelechem.2015.11.013
    [71]
    ZHU L, GE P, XIE L, et al. Doped-Li1+xV3O8 as cathode materials for lithium-ion batteries: A mini review[J]. Electrochemistry Communications,2020,115:106722. doi: 10.1016/j.elecom.2020.106722
    [72]
    QIN R, WEI Y, ZHAI T, et al. LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6:9737-9746. doi: 10.1039/C8TA01124A
    [73]
    CROY J R, GALLAGHER K G, BALASUBRAMANIAN M, et al. Examining hysteresis in composite xLi2MnO3·(1-x)LiMO2 cathode structures[J]. The Journal of Physical Chemistry C,2013,117:6525-6536.
    [74]
    PADHI A K, ARCHIBALD W B, NANJUNDASWAMY K S, et al. Ambient and high-pressure structures of LiMnVO4 and its Mn3+x/Mn2+x redox energy[J]. Journal of Solid State Chemistry,1997,128:267-272. doi: 10.1006/jssc.1996.7217
    [75]
    WAGNER N, SVENSSON A M, VULLUM-BRUER F. Effect of carbon content and annealing atmosphere on phase purity and morphology of Li2MnSiO4 synthesized by a PVA assisted sol–gel method[J]. Solid State Ionics,2015,276:26-32. doi: 10.1016/j.ssi.2015.03.029
    [76]
    TAN H, YU X, HUANG K, et al. Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode[J]. Journal of Energy Chemistry,2020,51:388-395. doi: 10.1016/j.jechem.2020.03.053
    [77]
    FENG J, LIU X, ZHANG X, et al. Effects of synthesis methods on Li1+xV3O8 as cathodes in lithium-ion batteries[J]. Journal of The Electrochemical Society,2009,156:A768. doi: 10.1149/1.3174386
    [78]
    BI L, SONG Z, LIU X, et al. Critical roles of RuO2 nano-particles in enhancing cyclic and rate performance of LISICON Li3V2(PO4)3 cathode materials[J]. Journal of Alloys and Compounds,2020,845:156271. doi: 10.1016/j.jallcom.2020.156271
    [79]
    YUAN Z, CUI Y, SHEN M, et al. Preparation and electrochemical performance of LiTi2(PO4)3/C composite cathode for lithium ion batteries[J]. Acta Physico-Chimica Sinica,2012,28:1169-1176. doi: 10.3866/PKU.WHXB201203012
    [80]
    ZHOU J, SUN X, WANG K. Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries[J]. Ceramics International,2016,42:10228-10236. doi: 10.1016/j.ceramint.2016.03.144
    [81]
    NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials,2018,8:1702397. doi: 10.1002/aenm.201702397
    [82]
    KIM D, SANDI G, CROY J R, et al. Composite 'layered-layered-spinel' cathode structures for lithium-ion batteries[J]. Journal of The Electrochemical Society,2013,160:A31-A38. doi: 10.1149/2.049301jes
    [83]
    ATES M N, MUKERJEE S, ABRAHAM K M. A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries[J]. Journal of The Electrochemical Society,2015,162:A1236-A1245. doi: 10.1149/2.0481507jes
    [84]
    LI J, LI M, ZHANG L, et al. General synthesis of xLi2MnO3(1−x)LiNi1/3-Co1/3Mn1/3O2(x=1/4, 1/3, and 1/2) hollow microspheres towards enhancing the performance of rechargeable lithium ion batteries[J]. Journal of Materials Chemistry A,2016,4:12442-12450. doi: 10.1039/C6TA04219H
    [85]
    FEY G T K, LI W, DAHN J R. LiNiVo4-A 4.8 volt electrode material for lithium cells[J]. Journal of The Electrochemical Society,1994,141:2279-2282. doi: 10.1149/1.2055111
    [86]
    HAREENDRAKRISHNAKUMAR H, CHULLIYOTE R, JOSEPH M G. Micro- and nanocrystalline inverse spinel LiCoVO4 for intercalation pseudocapacitive Li+ storage with ultrahigh energy density and long-term cycling[J]. ACS Applied Energy Materials,2018,1:393-401. doi: 10.1021/acsaem.7b00070
    [87]
    PRAKASH D, MASUDA Y, SANJEEVIRAJA C. Structural, electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries[J]. Powder Technology,2013,235:454-459. doi: 10.1016/j.powtec.2012.10.042
    [88]
    VAJEESTON P, BIANCHINI F, FJELLVAG H. First-principles study of the structural stability and dynamic properties of Li2MSiO4(M=Mn, Co, Ni) Polymorphs[J]. Energies,2019,12(2):224. doi: 10.3390/en12020224
    [89]
    GONG Z, LI Y, YANG Y. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries[J]. Journal of Power Sources,2007,174:524-527. doi: 10.1016/j.jpowsour.2007.06.250
    [90]
    TSUBAKIYAMA K, KUDO Y, YAMASHITA K. First-principles study on Li2MSiO4(M=Mn, Fe, Co, Ni) as cathode materials of lithium ion battery[J]. ECS Transactions,2013,53:25-34.
    [91]
    HU Z, ZHANG K, GAO H, et al. Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A,2013,1:12650-12656. doi: 10.1039/c3ta12106b
    [92]
    WANG L, WU Z, ZOU J, et al. Li-free cathode materials for high energy density lithium batteries[J]. Joule,2019,3:2086-2102. doi: 10.1016/j.joule.2019.07.011
    [93]
    LI J, FU L, XU Z, et al. Electrochemical properties of carbon-wrapped FeF3 nanocomposite as cathode material for lithium ion battery[J]. Electrochimica Acta,2018,281:88-98. doi: 10.1016/j.electacta.2018.05.158
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (4730) PDF downloads(865) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return