Citation: | WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677. DOI: 10.13801/j.cnki.fhclxb.20210617.004 |
[1] |
LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,2006,103(43):15729-15735. DOI: 10.1073/pnas.0603395103
|
[2] |
蔡昊源. 电解水制氢方式的原理及研究进展[J]. 环境与发展, 2020, 32(5):129-131.
CAI H Y. Principle and research progress of hydrogen production by electrolyzing water[J]. Environment& Development,2020,32(5):129-131(in Chinese).
|
[3] |
CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications,2016,7:13638. DOI: 10.1038/ncomms13638
|
[4] |
WANG C H, HU F, YANG H C, et al. 1.82 wt% Pt/N, P co-doped carbon overwhelms 20 wt% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10(1):1-9. DOI: 10.1007/s12274-016-1283-7
|
[5] |
GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nature Communications,2014,5:4695. DOI: 10.1038/ncomms5695
|
[6] |
CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J]. Advanced Materials,2018,30(30):1802011. DOI: 10.1002/adma.201802011
|
[7] |
JIN X X, WANG R Y, ZHANG L X, et al. Electron configuration modulation of Ni single atoms for remarkably elevated photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2020,59(17):6827-6831. DOI: 10.1002/anie.201914565
|
[8] |
ZHENG X L, XU J B, YAN K Y, et al. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chemistry of Materials,2014,26(7):2344-2353. DOI: 10.1021/cm500347r
|
[9] |
LV X, YIN S. CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution[J]. Applied Surface Science,2021,537:147834. DOI: 10.1016/j.apsusc.2020.147834
|
[10] |
PU Z H, WANG M, KOU Z K, et al. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range[J]. Chemical Communications,2016,52(86):12753-12756. DOI: 10.1039/C6CC06267A
|
[11] |
ANANTHARAJ S, KUNDU S, NODA S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2020,8(8):4174-4192. DOI: 10.1039/C9TA14037A
|
[12] |
POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Che-mical Society,2013,135(25):9267-9270. DOI: 10.1021/ja403440e
|
[13] |
CHEN W F, SASAKI K, MA C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition,2012,51(25):6131-6135. DOI: 10.1002/anie.201200699
|
[14] |
LOVELL E C, LU X Y, ZHANG Q R, et al. From passivation to activation-tunable nickel/nickel oxide for hydrogen evolution electrocatalysis[J]. Chemical Communications,2020,56(11):1709-1712. DOI: 10.1039/C9CC07486D
|
[15] |
LASZCYSKA A, SZCZYGIE I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings[J]. International Journal of Hydrogen Energy,2020,45(1):508-520. DOI: 10.1016/j.ijhydene.2019.10.181
|
[16] |
MILES M H, THOMASON M A. Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltametric studies. [31 metals as electrocatalysts][J]. Journal of the Electrochemical Society,1976,123(10):1459-1461. DOI: 10.1149/1.2132619
|
[17] |
DUTTA S, HAN H, JE M, et al. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction[J]. Nano Energy,2019,67:104245.
|
[18] |
YANG J, WU H L, ZHU M, et al. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors[J]. Nano Energy,2017,33:453-461. DOI: 10.1016/j.nanoen.2017.02.007
|
[19] |
BIN D, YANG B B, LI C, et al. In situ growth of NiFe alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-Air batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26178-26187.
|
[20] |
张玉晖, 易清风. 铁/钴质量比对MWCNT-聚苯胺复合物氧还原电活性的影响[J]. 化工学报, 2014, 65(6):2113-2119. DOI: 10.3969/j.issn.0438-1157.2014.06.023
ZHANG Y H, YI Q F. Effect of Fe/Co mass ratio on activity of non-noble metal catalyst for oxygen reduction reaction[J]. Journal of Chemical Industry and Engineering (China),2014,65(6):2113-2119(in Chinese). DOI: 10.3969/j.issn.0438-1157.2014.06.023
|
[21] |
WU S D, LV X N, PIN D, et al. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J]. Electrochimica Acta,2020,340:135930. DOI: 10.1016/j.electacta.2020.135930
|
[22] |
AHN S H, HWANG S J, YOO S J, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. Jour-nal of Materials Chemistry,2012,22(30):15153-15159. DOI: 10.1039/c2jm31439h
|
[23] |
魏强, 孙慧, 钱君超, 等. CeO2/石墨烯的合成及其在光催化制氢中的应用[J]. 复合材料学报, 2018, 35(3):684-689.
WEI Q, SUN H, QIAN J C, et al. Synthesis of CeO2/graphene and its application in photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2018,35(3):684-689(in Chinese).
|
[24] |
CHEN Y F, LI Z J, ZHU Y B, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Materials,2019,31(8):1806312. DOI: 10.1002/adma.201806312
|
[25] |
KHANI H, GRUNDISH N S, WIPF D O, et al. Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution[J]. Advanced Energy Materials,2020,10(1):1903215. DOI: 10.1002/aenm.201903215
|
[26] |
LAI F L, MIAO Y E, HUANG Y P, et al. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2016,8(6):3558-3566.
|
[27] |
GOEL C, BHUNIA H, BAJPAI P K. Synthesis of nitrogen doped mesoporous carbons for carbon dioxide capture[J]. RSC Advances,2015,5(58):46568-46582. DOI: 10.1039/C5RA05684E
|
[28] |
YAN X X, GU M Y, WANG Y, et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis[J]. Nano Research,2020,13(4):975-982. DOI: 10.1007/s12274-020-2727-7
|
[29] |
ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Jour-nal of Materials Chemistry A,2015,3(29):14942-14962. DOI: 10.1039/C5TA02974K
|
[30] |
CASTELO-QUIBÉN J, ABDELWAHAB A, PÉREZ-CADENAS M, et al. Carbon-iron electro-catalysts for CO2 reduction. The role of the iron particle size[J]. Journal of CO2 Utilization,2018,24:240-249. DOI: 10.1016/j.jcou.2018.01.007
|
[31] |
曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11):3764-3774.
ZENG Q L, LIU X C, LIU C, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica,2021,38(11):3764-3774(in Chinese).
|
[1] | NI Yaqian, HE Zhihai, SHI Jinyan, HE Yifeng, LIU Baoju. Influence of coral waste on the strength and volume stability of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 404-413. DOI: 10.13801/j.cnki.fhclxb.20230506.001 |
[2] | DUAN Jiashun, PENG Liping, YU Huayang, XU Ling. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001 |
[3] | SHI Jingwei, ZHAO Juan, LIU Chuanjun, LI Dongsheng. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600. DOI: 10.13801/j.cnki.fhclxb.20191011.001 |
[4] | XIE Yanxia, BI Songmei, WANG Dongqiang, MA Mingming, WU Fei. Preparation and dispersion stability of Sb2O3/chloroprene latex composite modified with polyvinyl alcohol[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2535-2541. DOI: 10.13801/j.cnki.fhclxb.20171128.003 |
[5] | LI Hui, CHU Guohong, SHI Qiang, GENG Bing, ZHANG Shuxiang. Thermal stability of calcium sulfate whisker modified fluororubber composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 58-62. |
[6] | LI Ming, LI Yuan-qing, FU Shao-yun. Cryogenic mechanical properties and thermal stabil ity of polyimidehybrid f ilms f illed with MMT-TiO2 nano-particles[J]. Acta Materiae Compositae Sinica, 2006, 23(1): 69-74. |
[7] | WAN Zhi-min, DU Xing-wen, XIE Zhi-min. IMPACT RESPONSE AND STABILITY ANALYSIS OF GLASS-EPOXY CYLINDRICAL SHELL[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 82-86. |
[8] | SUN Xiao-feng, ZHANG Zhi-min. ANALYSIS OF THE NONLINEAR STABILITY OF COMPOSITE MULTIWEB STRUCTURES[J]. Acta Materiae Compositae Sinica, 2001, 18(3): 119-123. |
[9] | Zhang Zhimin, Tong Xiaolin, Zhou Chenfu. NONLINEAR STABILITY ANALYSIS OF ARBITRARILY LAMINATED STIFFENED PLATES WITHELASTICALLY SUPPORTED EDGES[J]. Acta Materiae Compositae Sinica, 1995, 12(2): 67-76. |
[10] | Wen Xuanling, Chen Haoran. THE INFLUENCE OF INPLANE BOUNDARY CONSTRAINTS ON NONLINEAR STABILITY OF COMPOSITE LAMINATES UNDER COMPRESSION LOADING[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 33-38. |
1. |
程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 .
![]() | |
2. |
郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 .
![]() | |
3. |
柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 .
![]() |