WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677. DOI: 10.13801/j.cnki.fhclxb.20210617.004
Citation: WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677. DOI: 10.13801/j.cnki.fhclxb.20210617.004

Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen

More Information
  • Received Date: April 08, 2021
  • Revised Date: May 31, 2021
  • Accepted Date: June 07, 2021
  • Available Online: June 17, 2021
  • The hydrogen production from hydrogen evolution reaction (HER) in electrochemical water splitting is considered to be one of the most promising energy conversion methods, which can simultaneously obtain high purity hydrogen and realize energy storage and conversion. The key depends on the development of HER electrocatalysts with high efficiency, high stability and low price. A series of NiOOH/polyaniline (NiOOH/PANI) catalyst precursors were prepared via one-pot hydrothermal method. After pyrolysis at 800°C, the Ni-NiO/N-C electrocatalysts were obtained and applied to HER. The XRD, SEM, TEM, BET, XPS and Raman spectroscopy were conducted to analyze the physical and chemical properties of the catalysts. Results show that the catalysts are present in the nanosheet morphology, the nickel and nickel oxide are coexisted and highly dispersed in the carbon support. The results of HER tests demonstrate that the catalytic performance is closely related with the content of nickel in the catalyst, and the Ni-NiO/N-C-0.6 catalyst with the aniline addition of 0.6 mL exhibits the best performance for HER, which has an overpotential of only 168 mV at a current density of 10 mA·cm−2. Besides, the catalyst also has good catalytic stability with almost no detectable activity decay after 16 h HER test or 1000 times of cyclic voltammetry measurements, demonstrating broad application prospects.
  • [1]
    LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences,2006,103(43):15729-15735. DOI: 10.1073/pnas.0603395103
    [2]
    蔡昊源. 电解水制氢方式的原理及研究进展[J]. 环境与发展, 2020, 32(5):129-131.

    CAI H Y. Principle and research progress of hydrogen production by electrolyzing water[J]. Environment& Development,2020,32(5):129-131(in Chinese).
    [3]
    CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications,2016,7:13638. DOI: 10.1038/ncomms13638
    [4]
    WANG C H, HU F, YANG H C, et al. 1.82 wt% Pt/N, P co-doped carbon overwhelms 20 wt% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10(1):1-9. DOI: 10.1007/s12274-016-1283-7
    [5]
    GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nature Communications,2014,5:4695. DOI: 10.1038/ncomms5695
    [6]
    CHEN Z L, WU R B, LIU Y, et al. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J]. Advanced Materials,2018,30(30):1802011. DOI: 10.1002/adma.201802011
    [7]
    JIN X X, WANG R Y, ZHANG L X, et al. Electron configuration modulation of Ni single atoms for remarkably elevated photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2020,59(17):6827-6831. DOI: 10.1002/anie.201914565
    [8]
    ZHENG X L, XU J B, YAN K Y, et al. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chemistry of Materials,2014,26(7):2344-2353. DOI: 10.1021/cm500347r
    [9]
    LV X, YIN S. CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution[J]. Applied Surface Science,2021,537:147834. DOI: 10.1016/j.apsusc.2020.147834
    [10]
    PU Z H, WANG M, KOU Z K, et al. Mo2C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range[J]. Chemical Communications,2016,52(86):12753-12756. DOI: 10.1039/C6CC06267A
    [11]
    ANANTHARAJ S, KUNDU S, NODA S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2020,8(8):4174-4192. DOI: 10.1039/C9TA14037A
    [12]
    POPCZUN E J, MCKONE J R, READ C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Che-mical Society,2013,135(25):9267-9270. DOI: 10.1021/ja403440e
    [13]
    CHEN W F, SASAKI K, MA C, et al. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets[J]. Angewandte Chemie International Edition,2012,51(25):6131-6135. DOI: 10.1002/anie.201200699
    [14]
    LOVELL E C, LU X Y, ZHANG Q R, et al. From passivation to activation-tunable nickel/nickel oxide for hydrogen evolution electrocatalysis[J]. Chemical Communications,2020,56(11):1709-1712. DOI: 10.1039/C9CC07486D
    [15]
    LASZCYSKA A, SZCZYGIE I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings[J]. International Journal of Hydrogen Energy,2020,45(1):508-520. DOI: 10.1016/j.ijhydene.2019.10.181
    [16]
    MILES M H, THOMASON M A. Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltametric studies. [31 metals as electrocatalysts][J]. Journal of the Electrochemical Society,1976,123(10):1459-1461. DOI: 10.1149/1.2132619
    [17]
    DUTTA S, HAN H, JE M, et al. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction[J]. Nano Energy,2019,67:104245.
    [18]
    YANG J, WU H L, ZHU M, et al. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors[J]. Nano Energy,2017,33:453-461. DOI: 10.1016/j.nanoen.2017.02.007
    [19]
    BIN D, YANG B B, LI C, et al. In situ growth of NiFe alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-Air batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26178-26187.
    [20]
    张玉晖, 易清风. 铁/钴质量比对MWCNT-聚苯胺复合物氧还原电活性的影响[J]. 化工学报, 2014, 65(6):2113-2119. DOI: 10.3969/j.issn.0438-1157.2014.06.023

    ZHANG Y H, YI Q F. Effect of Fe/Co mass ratio on activity of non-noble metal catalyst for oxygen reduction reaction[J]. Journal of Chemical Industry and Engineering (China),2014,65(6):2113-2119(in Chinese). DOI: 10.3969/j.issn.0438-1157.2014.06.023
    [21]
    WU S D, LV X N, PIN D, et al. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO[J]. Electrochimica Acta,2020,340:135930. DOI: 10.1016/j.electacta.2020.135930
    [22]
    AHN S H, HWANG S J, YOO S J, et al. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis[J]. Jour-nal of Materials Chemistry,2012,22(30):15153-15159. DOI: 10.1039/c2jm31439h
    [23]
    魏强, 孙慧, 钱君超, 等. CeO2/石墨烯的合成及其在光催化制氢中的应用[J]. 复合材料学报, 2018, 35(3):684-689.

    WEI Q, SUN H, QIAN J C, et al. Synthesis of CeO2/graphene and its application in photocatalytic hydrogen production[J]. Acta Materiae Compositae Sinica,2018,35(3):684-689(in Chinese).
    [24]
    CHEN Y F, LI Z J, ZHU Y B, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Materials,2019,31(8):1806312. DOI: 10.1002/adma.201806312
    [25]
    KHANI H, GRUNDISH N S, WIPF D O, et al. Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution[J]. Advanced Energy Materials,2020,10(1):1903215. DOI: 10.1002/aenm.201903215
    [26]
    LAI F L, MIAO Y E, HUANG Y P, et al. Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2016,8(6):3558-3566.
    [27]
    GOEL C, BHUNIA H, BAJPAI P K. Synthesis of nitrogen doped mesoporous carbons for carbon dioxide capture[J]. RSC Advances,2015,5(58):46568-46582. DOI: 10.1039/C5RA05684E
    [28]
    YAN X X, GU M Y, WANG Y, et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis[J]. Nano Research,2020,13(4):975-982. DOI: 10.1007/s12274-020-2727-7
    [29]
    ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Jour-nal of Materials Chemistry A,2015,3(29):14942-14962. DOI: 10.1039/C5TA02974K
    [30]
    CASTELO-QUIBÉN J, ABDELWAHAB A, PÉREZ-CADENAS M, et al. Carbon-iron electro-catalysts for CO2 reduction. The role of the iron particle size[J]. Journal of CO2 Utilization,2018,24:240-249. DOI: 10.1016/j.jcou.2018.01.007
    [31]
    曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11):3764-3774.

    ZENG Q L, LIU X C, LIU C, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica,2021,38(11):3764-3774(in Chinese).
  • Related Articles

    [1]NI Yaqian, HE Zhihai, SHI Jinyan, HE Yifeng, LIU Baoju. Influence of coral waste on the strength and volume stability of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 404-413. DOI: 10.13801/j.cnki.fhclxb.20230506.001
    [2]DUAN Jiashun, PENG Liping, YU Huayang, XU Ling. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1890-1906. DOI: 10.13801/j.cnki.fhclxb.20211118.001
    [3]SHI Jingwei, ZHAO Juan, LIU Chuanjun, LI Dongsheng. Stability of composite stiffened panels in plane shear[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1590-1600. DOI: 10.13801/j.cnki.fhclxb.20191011.001
    [4]XIE Yanxia, BI Songmei, WANG Dongqiang, MA Mingming, WU Fei. Preparation and dispersion stability of Sb2O3/chloroprene latex composite modified with polyvinyl alcohol[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2535-2541. DOI: 10.13801/j.cnki.fhclxb.20171128.003
    [5]LI Hui, CHU Guohong, SHI Qiang, GENG Bing, ZHANG Shuxiang. Thermal stability of calcium sulfate whisker modified fluororubber composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 58-62.
    [6]LI Ming, LI Yuan-qing, FU Shao-yun. Cryogenic mechanical properties and thermal stabil ity of polyimidehybrid f ilms f illed with MMT-TiO2 nano-particles[J]. Acta Materiae Compositae Sinica, 2006, 23(1): 69-74.
    [7]WAN Zhi-min, DU Xing-wen, XIE Zhi-min. IMPACT RESPONSE AND STABILITY ANALYSIS OF GLASS-EPOXY CYLINDRICAL SHELL[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 82-86.
    [8]SUN Xiao-feng, ZHANG Zhi-min. ANALYSIS OF THE NONLINEAR STABILITY OF COMPOSITE MULTIWEB STRUCTURES[J]. Acta Materiae Compositae Sinica, 2001, 18(3): 119-123.
    [9]Zhang Zhimin, Tong Xiaolin, Zhou Chenfu. NONLINEAR STABILITY ANALYSIS OF ARBITRARILY LAMINATED STIFFENED PLATES WITHELASTICALLY SUPPORTED EDGES[J]. Acta Materiae Compositae Sinica, 1995, 12(2): 67-76.
    [10]Wen Xuanling, Chen Haoran. THE INFLUENCE OF INPLANE BOUNDARY CONSTRAINTS ON NONLINEAR STABILITY OF COMPOSITE LAMINATES UNDER COMPRESSION LOADING[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 33-38.
  • Cited by

    Periodical cited type(3)

    1. 程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 . 本站查看
    2. 郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 .
    3. 柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1713) PDF downloads (124) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return