Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002
Citation: XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1152-1162. doi: 10.13801/j.cnki.fhclxb.20210616.002

Preparation and wave absorption properties of ZnO@RGO composites

doi: 10.13801/j.cnki.fhclxb.20210616.002
  • Received Date: 2021-03-18
  • Accepted Date: 2021-05-14
  • Rev Recd Date: 2021-05-03
  • Available Online: 2021-06-16
  • Publish Date: 2021-03-01
  • With the rapid development of wireless information technology, electromagnetic interference has become a prominent problem, which has attracted worldwide attention. Exposure to electromagnetic radiation for a long time will damage the central nervous system, cardiovascular system and visual system to varying degrees. The key to solving this problem is to develop materials that can absorb electromagnetic waves. In order to improve the microwave absorption properties of reduced graphene oxide (RGO), the tetrahedral needle-like ZnO was successfully obtained by induction heating, and ZnO@RGO composites with different proportions were prepared by simple hydrothermal method. The morphology, size, and phase structure of ZnO@RGO composites were analyzed by SEM, XRD and Raman. And the effects of the mass ratio of ZnO and the paraffin filling amount on the electromagnetic parameters and absorbing properties of ZnO@RGO composites were also discussed. The ZnO@RGO composite with ZnO∶GO mass ratio of 3∶1 has the best wave absorption performance (−44.5 dB; 3 mm). Electromagnetic parame-ters show that the attenuation mechanism of ZnO@RGO composites can be attributed to the conductance loss and polarization effect. ZnO@RGO composites have a low reflection loss value and thin thickness, which has great potential for military stealth.

     

  • loading
  • [1]
    WANG Y, GAO X, ZHANG W Z, et al. Synthesis of hierarchical CuS/RGO/PANI/Fe3O4 quaternary composite and enhanced microwave absorption performance[J]. Journal of Alloys and Compounds,2018,757:372-381. doi: 10.1016/j.jallcom.2018.05.080
    [2]
    LV H L, ZHANG H Q, JI G B, et al. Interface strategy to achieve tunable high frequency attenuation[J]. ACS Applied Materials Interfaces,2016,8(10):6529-6538. doi: 10.1021/acsami.5b12662
    [3]
    WU G L, CHENG Y H, REN Y Y, et al. Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere compo-site and its application as microwave absorbing material[J]. Journal of Alloys and Compounds,2015,652(15):346-350.
    [4]
    HAN S J, WANG S Y, LI W H, et al. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance[J]. Ceramics International,2018,44(9):10352-10361. doi: 10.1016/j.ceramint.2018.03.046
    [5]
    QU B, ZHU C, LI C, ZHANG X, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials Interfaces,2016,8(6):3730-3735. doi: 10.1021/acsami.5b12789
    [6]
    XIA L, ZHANG X Y, YANG Y N, et al. Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium-aluminume-silicate (LAS) composites[J]. Journal of Alloys and Compounds,2018,748(5):154-162.
    [7]
    CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials,2013,25(9):1296-1300. doi: 10.1002/adma.201204196
    [8]
    QING Y, ZHOU W, LUO F, et al. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating[J]. Physica B: Condensed Matter,2010,405(4):1181-1184. doi: 10.1016/j.physb.2009.11.032
    [9]
    DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials,2014,29(5):461-169.
    [10]
    SHEN W, REN B Y, WU S Z, et al. Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: Composition control for superior broadband microwave absorption performance[J]. Applied Surface Science,2018,453(30):464-476.
    [11]
    ALI K, IQBAL J, JAN T, et al. Synthesis of CuFe2O4-ZnO nanocomposites with enhanced electromagnetic wave absorption properties[J]. Journal of Alloys and Compounds,2017,705(25):559-565.
    [12]
    LUO J, XU Y, YAO W, et al. Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline com-posites[J]. Composites Science and Technology,2015,117(29):315-321.
    [13]
    FU M, JIAO Q, ZHAO Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials[J]. Journal of Materials Chemistry A,2014,2(3):735-744. doi: 10.1039/C3TA14050D
    [14]
    LIAO L, PENG H L, LIU Z F, et al. Chemistry makes graphene beyond graphene[J]. Journal of American Che-mistry Society,2014,136(35):12194-12200. doi: 10.1021/ja5048297
    [15]
    SU Z B, TAN L, TAO J, et al. Enhanced microwave absorption properties of FeNi nanocrystals decorating reduced graphene oxide[J]. Physical Status Solidi B,2018,255(6):1700553-1700556. doi: 10.1002/pssb.201700553
    [16]
    SU Z B, TAO J, XIANG J Y, et al. Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres[J]. Materials Research Bulletin,2016,84:445-448. doi: 10.1016/j.materresbull.2016.08.036
    [17]
    WEN F S, HOU H, XIANG J Y, et al. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber[J]. Carbon,2015,89:372-377. doi: 10.1016/j.carbon.2015.03.057
    [18]
    LU M M, CAO W Q, SHI H L, et al. Multi-wall carbon nano-tubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature[J]. Journal of Materials Chemistry A,2014,2(27):10540-10547. doi: 10.1039/c4ta01715c
    [19]
    ZHANG L, ZHANG X H, ZHANG G J, et al. Investigation on the optimization, design and microwave absorption pro-perties of reduced graphene oxide/tetrapod-like ZnO composites[J]. RSC Advances,2015,5(14):10197-10203. doi: 10.1039/C4RA12591F
    [20]
    LIU J, CAO W Q, JIN H B, et al. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature[J]. Journal of Materials Chemistry C,2015,3(18):4670-4677. doi: 10.1039/C5TC00426H
    [21]
    CHEN X Y, GUO H C, WANG T, et al. In-situ fabrication of reduced graphene oxide (rGO)/ZnO heterostructure: surface functional groups induced electrical properties[J]. Electrochimica Acta,2016,196(1):558-564.
    [22]
    GE C, LI H J, LI M J, et al. Synthesis of a ZnO nanorod/CVD graphene composite for dihydroxybenzene isomers[J]. Carbon,2015,95:1-9. doi: 10.1016/j.carbon.2015.08.006
    [23]
    ZHANG B P, LU C X, Li H, et al. Improving microwave adsorption property of ZnO particle by doping graphene[J]. Materials Letters,2014,116(1):16-19.
    [24]
    QIN H, LIAO Q L, ZHANG G J, et al. Microwave absorption properties of carbon black and tetrapod-like ZnO whiskers composites[J]. Applied Surface Science,2013,286(1):7-11.
    [25]
    HU W B, LIU Y, WITHERS R L, FRANKCOMBE T J, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials,2013,12(9):821-826. doi: 10.1038/nmat3691
    [26]
    QUAN B, LIU W, LIU Y S, et al. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties[J]. Journal of Colloid Interface Science,2016,481(1):13-19.
    [27]
    HAN M K, YIN X W, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2014,2(39):16403-16409. doi: 10.1039/C4TA03033H
    [28]
    FENG W, WANG Y M, CHEN J C, et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics,2017,19(22):14596-14605. doi: 10.1039/C7CP02039B
    [29]
    ZHAO G L, XIA L, WU S S, et al. Ultrafast and mass production of ZnO nanotetrapods by induction-heating under air ambient[J]. Materials Letters,2014,118(1):126-129.
    [30]
    SHAH A, WANG Y H, HUANG H, et al. Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates[J]. Composite Structure,2015,131(1):1132-1141.
    [31]
    WANG Z Q, ZHAO P F, HUANG H, et al. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance[J]. Physical Chemistry Chemical Physics,2018,20(20):14155-14165. doi: 10.1039/C8CP00160J
    [32]
    SHU R W, LI W J, ZHOU X, et al. Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites[J]. Journal of Alloys and Compounds,2018,743(30):163-174.
    [33]
    QUAN B, LIANG X H, XU G Y, et al. A permittivity regula-ting strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry,2017,41(3):1259-1266. doi: 10.1039/C6NJ03052A
    [34]
    XU W, WANG G S, YIN P G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding[J]. Carbon,2018,139:759-767. doi: 10.1016/j.carbon.2018.07.044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1218) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return