Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
MA Chunyan, WANG Jun, BAI Junwei, et al. Preparation and dynamic mechanical properties of boron carbide andorganosilicon two-dimensional laminated composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1091-1101. doi: 10.13801/j.cnki.fhclxb.20210609.003
Citation: MA Chunyan, WANG Jun, BAI Junwei, et al. Preparation and dynamic mechanical properties of boron carbide andorganosilicon two-dimensional laminated composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1091-1101. doi: 10.13801/j.cnki.fhclxb.20210609.003

Preparation and dynamic mechanical properties of boron carbide andorganosilicon two-dimensional laminated composites

doi: 10.13801/j.cnki.fhclxb.20210609.003
  • Received Date: 2021-03-16
  • Accepted Date: 2021-06-03
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-06-09
  • Publish Date: 2021-03-01
  • The development of science and technology has put forward higher and higher requirements for material properties. It is an effective way to achieve the best performance in a specific direction by ordering the internal structure of materials. However, the traditional one-way freezing technology cannot achieve the preparation of two-dimensional ordered structure. B4C layered scaffolds with single orientation were prepared by bidirectional freezing method. The layered scaffolds were filled with polydimethylsiloxane (PDMS) to prepare the two-dimensional layered boron carbide and organosilicate composites with anisotropy. There is an alternate arrangement structure of PDMS and B4C skeleton at the growth plane of A in the composite material. It is a stacked structure like ocean waves at the growth plane of B. The layered scaffold maintains an obvious two-dimensional ordered layered structure in the composite material. The maximum in-plane anisotropy ratio of dynamic modulus of the composite can reach 12.9, and the dynamic modulus shows obvious Payne effect. It provides some new methods and ideas for the preparation of anisotropic composite material systems.

     

  • loading
  • [1]
    WANG L H. Compressive capacitance relaxation of carbon black filled silicone rubber composite[J]. Polymer Composites,2018,39(10):3446-3451. doi: 10.1002/pc.24362
    [2]
    LIN J L, SU S M, HE Y B, et al. Improving thermal and mecha-nical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes[J]. New Carbon Materials,2020,35(1):66-72. doi: 10.1016/S1872-5805(20)60476-0
    [3]
    YANG D, WEI Q G, LI B Y, et al. High thermal conductive silicone rubber composites constructed by strawberry-structured Al2O3-PCPA-Ag hybrids[J]. Composites Part A: Applied Science and Manufacturing,2021,142:106260. doi: 10.1016/j.compositesa.2020.106260
    [4]
    YADAV S G, GUNTUR N P R, GOPALAN S, et al. Effect of titanium carbide powder as a filler on the mechanical properties of silicone rubber [J]. Materials Today: Proceedings, 2021, 46(1): 665-671
    [5]
    刘斌, 许春莉, 王许云, 等. 纳米Fe2O3-还原氧化石墨烯复合材料的制备及对双酚A的检测[J]. 复合材料学报, 2020, 37(1):182-190.

    LIU Bin, XU Chunli, WANG Xuyun, et al. Preparation of nano Fe2O3-reduced graphene oxide composite and its determination of bisphenol A[J]. Acta Materiae Compositae Sinica,2020,37(1):182-190(in Chinese).
    [6]
    ZHAO X L, YANG X, LI Q, et al. Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material[J]. Composites Science and Technology,2017,150:187-193. doi: 10.1016/j.compscitech.2017.07.025
    [7]
    SONG P, SONG J N, ZHANG Y. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity[J]. Composites Part B: Engineering,2020,191:107979. doi: 10.1016/j.compositesb.2020.107979
    [8]
    孙晋茹, 姚学玲, 李亚丰, 等. 碳纤维增强树脂复合材料在多重连续雷电流冲击下的损伤特性[J]. 复合材料学报, 2019, 36(12):2764-2771.

    SUN Jinru, YAO Xueling, LI Yafeng, et al. Damage properties of carbon fiber reinforced epoxy composite subjected to multiple continuous lightning current strikes[J]. Acta Materiae Compositae Sinica,2019,36(12):2764-2771(in Chinese).
    [9]
    高沐, 夏志东, 陈婧晗, 等. 拉伸应变下镍包碳纤维填充导电橡胶取向及电阻响应[J]. 复合材料学报, 2019, 36(12):2756-2763.

    GAO Mu, XIA Zhidong, CHEN Jinghan, et al. Orientation and resistivity response of nickel coated carbon fiber filled conductive rubber at tensile strain[J]. Acta Materiae Compositae Sinica,2019,36(12):2756-2763(in Chinese).
    [10]
    LU Y, WANG J C, WANG L, et al. Construction of 3D carbon fiber/carbon nanotube/silicone rubber nanocomposites for stretchable conductors through interface host-guest dendrimers[J]. Composites Science and Technology,2021,205:108692. doi: 10.1016/j.compscitech.2021.108692
    [11]
    LIU P Y, LI L C, WANG L M. Effects of 2D boron nitride (BN) nanoplates filler on the thermal, electrical, mechani-cal and dielectric properties of high temperature vulca-nized silicone rubber for composite insulators[J]. Journal of Alloys and Compounds,2019,774:396-404. doi: 10.1016/j.jallcom.2018.10.002
    [12]
    SARATH P S, SAMSON S V, REGHUNATH R, et al. Fabrication of exfoliated graphite reinforced silicone rubber composites-Mechanical, tribological and dielectric properties[J]. Polymer Testing,2020,89:106601. doi: 10.1016/j.polymertesting.2020.106601
    [13]
    SONG Y Z, YU J H, YU L H, et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets [J]. Materials & Design, 2015, 88: 950-957.
    [14]
    ZHANG P, ZHU Q Z, SOOMRO R A, et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors[J]. Advanced Functional Materials,2020,30(47):2000922. doi: 10.1002/adfm.202000922
    [15]
    DU G L, MAO A R, YU J H, et al. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability[J]. Nature Communications,2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8
    [16]
    FERNANDEZ F, LEWICKI J P, TORTORELLI, D A. Optimal toolpath design of additive manufactured composite cylindrical structures[J]. Computer Methods in Applied Mechanics and Engineering,2021,376:113673. doi: 10.1016/j.cma.2021.113673
    [17]
    THAKUR A, DONG X Y. Additive manufacturing of 3D structural battery composites with coextrusion deposition of continuous carbon fibers[J]. Manufacturing Letters,2020,26:42-47. doi: 10.1016/j.mfglet.2020.09.007
    [18]
    TIAN J, ZHANG R, WU Y H, et al. Additive manufacturing of wood flour/polyhydroxyalkanoates (PHA) fully bio-based composites based on micro-screw extrusion system[J]. Materials & Design,2021,199:109418.
    [19]
    BHARDWAJ P, GRANCE A N. Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite[J]. Diamond and Related Materials,2020,106:107871. doi: 10.1016/j.diamond.2020.107871
    [20]
    BAI H B, CHEN Y, DELATTRE B. Bidirectional freeze casting for fabricationg lamellar structures: US Patent, 20170100857A1 [P]. 2015-10-13.
    [21]
    HAN J K, DU G L, GAO W W, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials,2019,29(13):1900412-1900421. doi: 10.1002/adfm.201900412
    [22]
    BAI H, WALSH F, GLUDOVATZ B, et al. Bioinspired hydroxyapatite/poly(methylmethacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Advanced Materials,2016,28(1):50-56. doi: 10.1002/adma.201504313
    [23]
    SHAMONIN M, KRAMARENKO E. Highly responsive magnetoactive elastomers: In novel magnetic nanostructures [M]. Amsterdam: Elsevier, 2018: 221-245.
    [24]
    WHITE J, MARK J, ERMAN B. Rheological behavior and processing of unvulcanized rubber. In science and technology of rubber [M]. San Diego: Academic Press, 1994: 257-338.
    [25]
    WANG X R, ROBERTSON C G. Strain-induced nonlinearity of filled rubbers[J]. Physical Review E :Statistical, Nonlinear, and Soft Matter Physics,2005,72(3):031406-031415.
    [26]
    ROBERTSON C G, WANG X R. Isoenergetic jamming tran-sition in particle-filled systems[J]. Physical Review Letters,2005,95(7):075703-075707. doi: 10.1103/PhysRevLett.95.075703
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (1022) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return