Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004
Citation: LI Jifeng, YAN Wenjing, FANG Ting, et al. Preparation of C6 carboxylic cellulose and adsorption for Cu2+[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1280-1290. doi: 10.13801/j.cnki.fhclxb.20210607.004

Preparation of C6 carboxylic cellulose and adsorption for Cu2+

doi: 10.13801/j.cnki.fhclxb.20210607.004
  • Received Date: 2021-03-31
  • Accepted Date: 2021-06-02
  • Rev Recd Date: 2021-05-19
  • Available Online: 2021-06-07
  • Publish Date: 2021-03-01
  • In order to improve the adsorption capacity of cellulose to metal ion pollutants, this study prepared C6 carboxylic microcrystalline cellulose (CMCC) by selective oxidation system. The oxidation process and oxidation mechanism of CMCC were analyzed by using modern test and characterization techniques, and the adsorption capacity of CMCC for Cu2+ was studied. The results show that the HNO3/H3PO4-NaNO2 system selectively oxidized the C6 primary hydroxyl group on the pyranose ring in microcrystalline cellulose (MCC) macromolecule to carboxyl group by NMR and FTIR testing. The oxidation reaction etches the MCC surface to a certain extent, which improves the hygroscopicity of the CMCC, decreases the crystallinity, and reduces the thermal stability of the CMCC. Cu2+ adsorption experiments show that the adsorption behavior of CMCC follows the quasi-second-order kinetic model and Langmuir isotherm, and the saturated adsorption capacity of Cu2+ is as high as 165.5 mg/g. The adsorption thermodynamic analysis show that the adsorption of Cu2+ by CMCC is mainly through the chemical reaction between the carboxyl group and metal ions. The results indicate that the functional cellulose containing carboxyl active group can be used as a highly efficient adsorbent and will be widely used in the field of metal ion pollutant treatment.

     

  • loading
  • [1]
    DU Z L, CHEN H A, GUO X Y, et al. Mechanism and industrial application feasibility analysis on microwave-assisted rapid synthesis of amino-carboxyl functionalized cellulose for enhanced heavy metal removal[J]. Chemosphere,2021,268:128833. doi: 10.1016/j.chemosphere.2020.128833
    [2]
    PEI L J, LIU J J, GU X M, et al. Adsorption kinetic and mechanism of reactive dye on cotton yarns with different wettability in siloxane non-aqueous medium[J]. Journal of the Textile Institute,2019,111(7):925-933.
    [3]
    PEI X P, GAN L, TONG Z H, et al. Robust cellulose-based composite adsorption membrane for heavy metal removal[J]. Journal of Hazardous Materials,2021,406:115-125.
    [4]
    王瑞佳, 聂敬恒, 樊源源, 等. 微晶纤维素辅助制备C-TiO2复合材料及其对Cd2+的吸附性能[J]. 复合材料学报, 2020, 37(2):415-421.

    WANG Ruijia, NIE Jingheng, FAN Yuanyan, et al. Preparation of C-TiO2 composite with assistance of microcrystalline cellulose and its adsorption properties for Cd2+[J]. Acta Materiae Compositae Sinica,2020,37(2):415-421(in Chinese).
    [5]
    GUO X, XU D, YUAN H M, et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A,2019,7(47):27081-27088. doi: 10.1039/C9TA11502A
    [6]
    张晓涛, 王喜明. 木质纤维素/纳米蒙脱土复合材料对废水中Cu(II)的吸附及解吸[J]. 复合材料学报, 2015, 32(2):385-394.

    ZHANG Xiaotao, WANG Ximing. Adsorption and desorption of Cu (II) in wastewater by lignocellulose/ nano-montmorillonite composites[J]. Acta Materiae Compositae Sinica,2015,32(2):385-394(in Chinese).
    [7]
    SARKAYA K, BAKHSHPOUR M, BENIZLI A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions[J]. Separation Science and Technology,2019,54(18):2993-3004. doi: 10.1080/01496395.2018.1556300
    [8]
    SELLAOUI L, SOETAREDJO F, ISMADJI S, et al. Insights on the statistical physics modeling of the adsorption of Cd2+ and Pb2+ ions on bentonite-chitosan composite in single and binary systems[J]. Chemical Engineering Journal,2018,354:569-576. doi: 10.1016/j.cej.2018.08.073
    [9]
    TAO J, XIONG J, JIAO C, et al. Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efcient adsorbent for water treatment[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):60-68.
    [10]
    SELAMBAKKANNU S, OTHMAN N, BAKAR K, et al. Modification of radiation grafted banana trunk fibers for adsorption of anionic dyes[J]. Fibers and Polymers,2019,20(2):2556-2569.
    [11]
    VALENCIA L, MONTI S, KUMAR S, et al. Nanocellulose/graphene oxide layered membranes: Elucidating their behaviour during filtration of water and metal ions in real time[J]. Nanoscale,2019,11(46):22413-22422. doi: 10.1039/C9NR07116D
    [12]
    谢水波, 罗景阳, 刘青, 等. 羟乙基纤维素/海藻酸钠复合膜对六价铀的吸附性能及吸附机制[J]. 复合材料学报, 2015, 32(1):268-275.

    XIE S B, LUO J Y, LIU Q, et al. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(Ⅵ)[J]. Acta Materiae Compo-sitae Sinica,2015,32(1):268-275(in Chinese).
    [13]
    HOU X B, LI Y C, PAN Y F, et al. Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation[J]. Chemical Communications,2018,54(97):13714-13717. doi: 10.1039/C8CC07872F
    [14]
    QIN F M, FANG Z Q, ZHOU J, et al. Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: Performance and mechanism[J]. Biomacromolecules,2019,20(12):4466-4475. doi: 10.1021/acs.biomac.9b01198
    [15]
    HUANG Z J, HUANG Z Y, FENG L J, et al. Modified cellulose by polyethyleneimine and ethylenediamine with induced Cu(II) and Pb(II) adsorption potentialities[J]. Carbohydrate Polymers,2018,202:470-478. doi: 10.1016/j.carbpol.2018.08.136
    [16]
    LI Y, XIAO H N, PAN Y F, et al. Study on cellulose microfilaments based composite spheres: Microwave-assisted synthesis, characterization, and application in pollutant removal[J]. Journal of Environmental Management,2018,228:85-92.
    [17]
    XU Y H, CHEN D D, Du Z F, et al. Structure and properties of silk fibroin grafted carboxylic cotton fabric via amide covalent modification[J]. Carbohydrate Polymers,2017,161:99-108. doi: 10.1016/j.carbpol.2016.12.071
    [18]
    PISITSAK P, PHAMONPON W, SOONTORNCHATCHAVET P, et al. The use of water hyacinth fibers to develop chitosan-based biocomposites with improved Cu2+ removal efficiency[J]. Composites Communications,2019,16:1-4. doi: 10.1016/j.coco.2019.08.003
    [19]
    ZHANG L L, LU H L, YU J, et al. Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal[J]. Cellulose,2018,25(12):7315-7328. doi: 10.1007/s10570-018-2077-8
    [20]
    ALLOUSS D, ESSAMLALI Y, CHAKIR A, et al. Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethy lcellulose- alginate hydrogel microspheres: Towards real wastewater treatment plants[J]. Cellulose, 2020, 27(7): 7476-7492.
    [21]
    TIAN C H, SHE J R, WU Y Q, et al. Reusable and cross-linked cellulose nanofibrils aerogel for the removal of heavy metal ions[J]. Polymer Composites,2018,39(12):4442-4451. doi: 10.1002/pc.24536
    [22]
    MILHOMENS G C, DE ALMEIDA C G, ZANETTE R D S, et al. Biocompatibility and adsorption properties of hydrogels obtained by graft polymerization of acrylic acid on cellulose from rice hulls[J]. Iranian Polymer Journal,2018,27(12):1023-1032. doi: 10.1007/s13726-018-0672-z
    [23]
    MEHREZ E E N, EMAD K R, SHAIMAA T E, et al. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal[J]. International Journal of Biological Macromolecules, 2018, 113: 248-258.
    [24]
    SRIVASTAVA S, KARDAM, RAJ K R. Nanotech reinforcement onto cellulosic fibers: Green remediation of toxic metals[J]. International Journal of Green Nanotechnology,2012,4(1):46-53. doi: 10.1080/19430892.2012.654744
    [25]
    LIU P, BORRALL P F, BOZIC M, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials,2015,294:177-185. doi: 10.1016/j.jhazmat.2015.04.001
    [26]
    SEHAQUI H, DE LARRAYA U P, LIU P, et al. Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment[J]. Cellulose,2014,21:2831-2844. doi: 10.1007/s10570-014-0310-7
    [27]
    LIU F L, HUA S, ZHOU L, et al. Development and characterization of chitosan functionalized dialdehyde viscose fiber for adsorption of Au(III) and Pd(II)[J]. International Journal of Biological Macromolecules,2021,173:457-466. doi: 10.1016/j.ijbiomac.2021.01.145
    [28]
    DU K F, LI S K, ZHAO L S, et al. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):17068-17075.
    [29]
    LAI W J, LIN S C. Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization[J]. Process Biochemistry,2018,74:141-147. doi: 10.1016/j.procbio.2018.08.024
    [30]
    MYERS A L. Thermodynamics of adsorption in porous materials[J]. Aiche Journal, 2002, 48(1): 145-160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (963) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return