ZOU Youchun, XIONG Chao, YIN Junhui, et al. Anti-penetration performance experiment and numerical simulation on layered composite structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1748-1760. DOI: 10.13801/j.cnki.fhclxb.20210604.002
Citation: ZOU Youchun, XIONG Chao, YIN Junhui, et al. Anti-penetration performance experiment and numerical simulation on layered composite structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1748-1760. DOI: 10.13801/j.cnki.fhclxb.20210604.002

Anti-penetration performance experiment and numerical simulation on layered composite structure

More Information
  • Received Date: April 08, 2021
  • Revised Date: May 18, 2021
  • Accepted Date: May 28, 2021
  • Available Online: June 04, 2021
  • In order to study the anti-penetration performance of 3-layer and above layered composite structures and entangled metallic wire material (EMWM) sandwich composite structures, 4 composite structures (SiC/UHMWPE/TC4, SiC/TC4/UHMWPE, SiC/UHMWPE/EMWM/TC4 and SiC/TC4/EMWM/UHMWPE) were designed using silicon carbide ceramics (SiC), ultra-high molecular weight polyethylene (UHMWPE), titanium alloy (TC4) and entangled metallic wire material (EMWM). The split-Hopkinson pressure bar test was used to study the dynamic mechanical behavior of the composite structures. Based on penetration test and numerical simulation, the anti-penetration mechanism, protection performance and energy characteristics of the composite structures were analyzed. Finally, the influence of the restraint effect on the anti-penetration performance of the EMWM composite structure was explored. The results show that the 4 composite structures designed have advantages in reducing mass and thickness. EMWM can delay and hinder the transmission of stress wave in the composite structures, which helps to reduce the damage of the composite structure. Imposing constraints on EMWM can significantly improve the anti-penetration performance of EMWM composite structures.
  • [1]
    FISCHER H. Military casualty statistics: Operation new dawn[R]. US, Operation Iraqi Freedom, and Operation Enduring Freedom CRS Report for Congress 12, 2010.
    [2]
    RAWAT P, ZHU D, RAHMAN M Z, et al. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review[J]. Acta Biomaterialia,2021,121:41-67. DOI: 10.1016/j.actbio.2020.12.003
    [3]
    ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms–A review on textiles and fiber-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. DOI: 10.1016/j.compstruct.2019.110966
    [4]
    史明东, 原梅妮, 何小晶, 等. Ti/Al_3Ti金属间化合物基层状复合材料抗侵彻性能数值模拟[J]. 复合材料学报, 2018, 35(8):2286-2292.

    SHI Mingdong, YUAN Meini, HE Xiaojing, et al. Numerical simulation of ballistic penetration of Ti/Al3Ti metalintermetallic laminate composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2286-2292(in Chinese).
    [5]
    焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9):1960-1972.

    JIAO Ya'nan, HE Yemao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix[J]. Acta Materiae Compositae Sinica,2017,34(9):1960-1972(in Chinese).
    [6]
    朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.

    ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese).
    [7]
    朱德举, 汤兴. 基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟[J]. 复合材料学报, 2020, 37(10):2561-2571.

    ZHU Deju, TANG Xing. Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell[J]. Acta Materiae Compositae Sinica,2020,37(10):2561-2571(in Chinese).
    [8]
    AN X, TIAN C, SUN Q, et al. Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures[J]. Defence Technology,2020,16:77-87. DOI: 10.1016/j.dt.2019.04.015
    [9]
    SCHWINGEL D, SEELIGER H W, VECCHIONACCI C, et al. Aluminium foam sandwich structures for space applications[J]. Acta Astronautica,2007,61:326-330. DOI: 10.1016/j.actaastro.2007.01.022
    [10]
    CHO J U, HONG S J, LEE S K, et al. Impact fracture behavior at the material of aluminum foam[J]. Materials Science and Engineering: A,2012,539:250-258. DOI: 10.1016/j.msea.2012.01.091
    [11]
    ZHU F, LU G, RUAN D, et al. Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores[J]. International Journal of Protective Structures,2010,1:507-541. DOI: 10.1260/2041-4196.1.4.507
    [12]
    MOHAN K, YIP T H, IDAPALAPATI S, et al. Impact response of aluminum foam core sandwich structures[J]. Materials Science and Engineering: A,2011,529:94-101. DOI: 10.1016/j.msea.2011.08.066
    [13]
    VAIDYA U K, PILLAY S, BARTUS S, et al. Impact and post-impact vibration response of protective metal foam composite sandwich plates[J]. Materials Science and Engineering: A,2006,428:59-66. DOI: 10.1016/j.msea.2006.04.114
    [14]
    肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应[J]. 振动与冲击, 2018, 37(15):110-117.

    XIAO Xianlin, WANG Changjin, ZHAO Guiping. Dynamic responses of carbon fiber compo site sandwich panels with aluminum foam core subjected to impact loading[J]. Journal of Vibration and Shock,2018,37(15):110-117(in Chinese).
    [15]
    张元豪, 程忠庆, 方志威, 等. 泡沫铝夹芯结构对中低速FSP的抗侵彻特性研究[J]. 振动与冲击, 2019, 38(22):231-235.

    ZHANG Yuanhao, CHENG Zhongqing, FANG Zhiwei, et al. Aluminum foam sandwich structures subjected to the impact by low-medium velocity FSP[J]. Journal of Vibration and Shock,2019,38(22):231-235(in Chinese).
    [16]
    ZHANG D, SCARPA F, MA Y, et al. Compression mechanics of nickel-based superalloy metal rubber[J]. Materials Science & Engineering: A,2013,580:305-312.
    [17]
    TAN Q, LIU P, DU C, et al. Mechanical behaviors of quasi-ordered entangled aluminum alloy wire material[J]. Materials Science and Engineering: A,2009,527:38-44. DOI: 10.1016/j.msea.2009.07.022
    [18]
    LIU P, HE G, WU L. Structure deformation and failure of sintered steel wire mesh under torsion loading[J]. Materials & Design,2009,30:2264-2268.
    [19]
    切戈达耶夫. 金属橡胶构件的设计[M]. 李中郢, 译. 北京: 国防工业出版社, 2000.

    CHEGODAEV D E. Design of metal rubber components[M]. LI Z Y, Translate. Beijing: Press of National Defense Industry, 2000(in Chinese).
    [20]
    TIAN C, AN X, SUN Q, et al. Experimental and numerical analyses of the penetration resistance of ceramic-metal hybrid structures[J]. Composite Structures,2019,211:264-272. DOI: 10.1016/j.compstruct.2018.12.021
    [21]
    WANG L, TANG T, MA J. Numerical simulation of UHMWPE laminated fiber plate resisted projectile[J]. Applied Mechanics and Materials,2013,395-396:24-28. DOI: 10.4028/www.scientific.net/AMM.395-396.24
    [22]
    ABBASI M, ALAVI NIA A. High-velocity impact behavior of sandwich structures with AL faces and foam cores-Experimental and numerical study[J]. Aerospace Science and Technology,2020,105:106039. DOI: 10.1016/j.ast.2020.106039
  • Related Articles

    [1]SONG Xin, LI Wei, LI Tong, WANG Chengbo, WANG Bo. Load distribution law in multi-bolts connected composite structure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2148-2156. DOI: 10.13801/j.cnki.fhclxb.20230926.002
    [2]TANG Yuling, REN Yuhe, ZHANG Junxia, HAN Lu, JIANG Meijiao. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612. DOI: 10.13801/j.cnki.fhclxb.20220809.002
    [3]FANG Ziang, ZHAO Libin, LIU Fengrui, ZHANG Jianyu. Testing method of bolt load distribution in carbon fiber/resin composite multi-bolt joints[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2795-2804. DOI: 10.13801/j.cnki.fhclxb.20190514.001
    [4]LI Xiang, XIE Zonghong. Development and validation of a parametrical modeling and analysis tool for bolted repair in composite structures[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3377-3385. DOI: 10.13801/j.cnki.fhclxb.20180408.002
    [5]XIE Zonghong, LI Xiang, GUO Jiaping, XIONG Xuan, DANG Xiaojuan. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 806-813. DOI: 10.13801/j.cnki.fhclxb.20151013.003
    [6]ZHANG Jianyu, LIU Fengrui, SHAN Meijuan, ZHAO Libin. Instrumented bolt for load vector of composite multi-bolt joints[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1420-1427. DOI: 10.13801/j.cnki.fhclxb.20150515.002
    [7]ZHAO Libin, SHAN Meijuan, PENG Lei, JI Shaohua, JIA Xiwen, XU Jifeng. Effect of manufacturing tolerance on strength scatter of composite bolted joint structure[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1092-1098. DOI: 10.13801/j.cnki.fhclxb.20140919.003
    [8]LI Nian, REN Feixiang, CHEN Puhui, YE Qiang, SUN Yanpeng. An improved GBJM method and its application in bolt load distribution and load capacity analysis of composite structures with bolt group[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 176-181. DOI: 10.13801/j.cnki.fhclxb.20140611.001
    [9]LIAO Qiang, LU Zixing, YANG Zhenyu, FENG Xiang, ZHANG Zhongwei, FENG Zhihai. Study of load distribution in the threads of composite fasteners[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 213-219.
    [10]LIU Xiangdong, LI Yazhi, SHU Huai, LIU Xingke. Experimental and numerical study on the pin-load distribution of multiple-bolted joints[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 210-217.
  • Cited by

    Periodical cited type(1)

    1. 鞠泽辉,王志强,张海洋,郑维,束必清. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能. 复合材料学报. 2024(12): 6691-6701 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1816) PDF downloads (168) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return