Citation: | ZOU Youchun, XIONG Chao, YIN Junhui, et al. Anti-penetration performance experiment and numerical simulation on layered composite structure[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1748-1760. DOI: 10.13801/j.cnki.fhclxb.20210604.002 |
[1] |
FISCHER H. Military casualty statistics: Operation new dawn[R]. US, Operation Iraqi Freedom, and Operation Enduring Freedom CRS Report for Congress 12, 2010.
|
[2] |
RAWAT P, ZHU D, RAHMAN M Z, et al. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review[J]. Acta Biomaterialia,2021,121:41-67. DOI: 10.1016/j.actbio.2020.12.003
|
[3] |
ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms–A review on textiles and fiber-reinforced composites impact responses[J]. Composite Structures,2019,223:110966. DOI: 10.1016/j.compstruct.2019.110966
|
[4] |
史明东, 原梅妮, 何小晶, 等. Ti/Al_3Ti金属间化合物基层状复合材料抗侵彻性能数值模拟[J]. 复合材料学报, 2018, 35(8):2286-2292.
SHI Mingdong, YUAN Meini, HE Xiaojing, et al. Numerical simulation of ballistic penetration of Ti/Al3Ti metalintermetallic laminate composites[J]. Acta Materiae Compositae Sinica,2018,35(8):2286-2292(in Chinese).
|
[5] |
焦亚男, 何业茂, 周庆, 等. 纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J]. 复合材料学报, 2017, 34(9):1960-1972.
JIAO Ya'nan, HE Yemao, ZHOU Qing, et al. Influence factors on ballistic performance and failure mechanism of fiber reinforced resin matrix[J]. Acta Materiae Compositae Sinica,2017,34(9):1960-1972(in Chinese).
|
[6] |
朱德举, 赵波. 仿生柔性防护装具的设计及防弹性能测试[J]. 复合材料学报, 2020, 37(6):1411-1417.
ZHU Deju, ZHAO Bo. Design and ballistic performance testing of bio-inspired flexible protection devices[J]. Acta Materiae Compositae Sinica,2020,37(6):1411-1417(in Chinese).
|
[7] |
朱德举, 汤兴. 基于犰狳外壳仿生的SiC-超高分子量聚乙烯柔性防护板的试验测试和有限元模拟[J]. 复合材料学报, 2020, 37(10):2561-2571.
ZHU Deju, TANG Xing. Experimental testing and finite element simulation of SiC-ultrahigh molecular weight polyethylene flexible protective plate inspired by armadillo shell[J]. Acta Materiae Compositae Sinica,2020,37(10):2561-2571(in Chinese).
|
[8] |
AN X, TIAN C, SUN Q, et al. Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures[J]. Defence Technology,2020,16:77-87. DOI: 10.1016/j.dt.2019.04.015
|
[9] |
SCHWINGEL D, SEELIGER H W, VECCHIONACCI C, et al. Aluminium foam sandwich structures for space applications[J]. Acta Astronautica,2007,61:326-330. DOI: 10.1016/j.actaastro.2007.01.022
|
[10] |
CHO J U, HONG S J, LEE S K, et al. Impact fracture behavior at the material of aluminum foam[J]. Materials Science and Engineering: A,2012,539:250-258. DOI: 10.1016/j.msea.2012.01.091
|
[11] |
ZHU F, LU G, RUAN D, et al. Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores[J]. International Journal of Protective Structures,2010,1:507-541. DOI: 10.1260/2041-4196.1.4.507
|
[12] |
MOHAN K, YIP T H, IDAPALAPATI S, et al. Impact response of aluminum foam core sandwich structures[J]. Materials Science and Engineering: A,2011,529:94-101. DOI: 10.1016/j.msea.2011.08.066
|
[13] |
VAIDYA U K, PILLAY S, BARTUS S, et al. Impact and post-impact vibration response of protective metal foam composite sandwich plates[J]. Materials Science and Engineering: A,2006,428:59-66. DOI: 10.1016/j.msea.2006.04.114
|
[14] |
肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应[J]. 振动与冲击, 2018, 37(15):110-117.
XIAO Xianlin, WANG Changjin, ZHAO Guiping. Dynamic responses of carbon fiber compo site sandwich panels with aluminum foam core subjected to impact loading[J]. Journal of Vibration and Shock,2018,37(15):110-117(in Chinese).
|
[15] |
张元豪, 程忠庆, 方志威, 等. 泡沫铝夹芯结构对中低速FSP的抗侵彻特性研究[J]. 振动与冲击, 2019, 38(22):231-235.
ZHANG Yuanhao, CHENG Zhongqing, FANG Zhiwei, et al. Aluminum foam sandwich structures subjected to the impact by low-medium velocity FSP[J]. Journal of Vibration and Shock,2019,38(22):231-235(in Chinese).
|
[16] |
ZHANG D, SCARPA F, MA Y, et al. Compression mechanics of nickel-based superalloy metal rubber[J]. Materials Science & Engineering: A,2013,580:305-312.
|
[17] |
TAN Q, LIU P, DU C, et al. Mechanical behaviors of quasi-ordered entangled aluminum alloy wire material[J]. Materials Science and Engineering: A,2009,527:38-44. DOI: 10.1016/j.msea.2009.07.022
|
[18] |
LIU P, HE G, WU L. Structure deformation and failure of sintered steel wire mesh under torsion loading[J]. Materials & Design,2009,30:2264-2268.
|
[19] |
切戈达耶夫. 金属橡胶构件的设计[M]. 李中郢, 译. 北京: 国防工业出版社, 2000.
CHEGODAEV D E. Design of metal rubber components[M]. LI Z Y, Translate. Beijing: Press of National Defense Industry, 2000(in Chinese).
|
[20] |
TIAN C, AN X, SUN Q, et al. Experimental and numerical analyses of the penetration resistance of ceramic-metal hybrid structures[J]. Composite Structures,2019,211:264-272. DOI: 10.1016/j.compstruct.2018.12.021
|
[21] |
WANG L, TANG T, MA J. Numerical simulation of UHMWPE laminated fiber plate resisted projectile[J]. Applied Mechanics and Materials,2013,395-396:24-28. DOI: 10.4028/www.scientific.net/AMM.395-396.24
|
[22] |
ABBASI M, ALAVI NIA A. High-velocity impact behavior of sandwich structures with AL faces and foam cores-Experimental and numerical study[J]. Aerospace Science and Technology,2020,105:106039. DOI: 10.1016/j.ast.2020.106039
|
[1] | SONG Xin, LI Wei, LI Tong, WANG Chengbo, WANG Bo. Load distribution law in multi-bolts connected composite structure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2148-2156. DOI: 10.13801/j.cnki.fhclxb.20230926.002 |
[2] | TANG Yuling, REN Yuhe, ZHANG Junxia, HAN Lu, JIANG Meijiao. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612. DOI: 10.13801/j.cnki.fhclxb.20220809.002 |
[3] | FANG Ziang, ZHAO Libin, LIU Fengrui, ZHANG Jianyu. Testing method of bolt load distribution in carbon fiber/resin composite multi-bolt joints[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2795-2804. DOI: 10.13801/j.cnki.fhclxb.20190514.001 |
[4] | LI Xiang, XIE Zonghong. Development and validation of a parametrical modeling and analysis tool for bolted repair in composite structures[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3377-3385. DOI: 10.13801/j.cnki.fhclxb.20180408.002 |
[5] | XIE Zonghong, LI Xiang, GUO Jiaping, XIONG Xuan, DANG Xiaojuan. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 806-813. DOI: 10.13801/j.cnki.fhclxb.20151013.003 |
[6] | ZHANG Jianyu, LIU Fengrui, SHAN Meijuan, ZHAO Libin. Instrumented bolt for load vector of composite multi-bolt joints[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1420-1427. DOI: 10.13801/j.cnki.fhclxb.20150515.002 |
[7] | ZHAO Libin, SHAN Meijuan, PENG Lei, JI Shaohua, JIA Xiwen, XU Jifeng. Effect of manufacturing tolerance on strength scatter of composite bolted joint structure[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1092-1098. DOI: 10.13801/j.cnki.fhclxb.20140919.003 |
[8] | LI Nian, REN Feixiang, CHEN Puhui, YE Qiang, SUN Yanpeng. An improved GBJM method and its application in bolt load distribution and load capacity analysis of composite structures with bolt group[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 176-181. DOI: 10.13801/j.cnki.fhclxb.20140611.001 |
[9] | LIAO Qiang, LU Zixing, YANG Zhenyu, FENG Xiang, ZHANG Zhongwei, FENG Zhihai. Study of load distribution in the threads of composite fasteners[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 213-219. |
[10] | LIU Xiangdong, LI Yazhi, SHU Huai, LIU Xingke. Experimental and numerical study on the pin-load distribution of multiple-bolted joints[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 210-217. |
1. |
鞠泽辉,王志强,张海洋,郑维,束必清. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能. 复合材料学报. 2024(12): 6691-6701 .
![]() |