TIAN Li, WANG Jinjing, LIU Qiang, et al. Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3996-4003. DOI: 10.13801/j.cnki.fhclxb.20210531.004
Citation: TIAN Li, WANG Jinjing, LIU Qiang, et al. Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 3996-4003. DOI: 10.13801/j.cnki.fhclxb.20210531.004

Synthesis and emulsifying performance of polyester sodium olefin sulfonate polymer as a CO2-switchable surfactant

More Information
  • Received Date: April 24, 2021
  • Accepted Date: May 24, 2021
  • Available Online: May 31, 2021
  • Polymer surfactants are widely used in scientific research and industrial fields such as food, agriculture and spanning. In order to reduce the side effect caused by the residual of the inactive polymer after most of the practical application process, designing and developing switchable polymer surfactants is of great significance and application value. A CO2-switchable surfactant Poly(N, N-Diethylaminoethyl methacrylate-sodium vinylsulfonate) (P(DEAEMA-SVS)) has been synthesized by free radical polymerization. The structure and molecular weight distribution of P(DEAEMA-SVS) were characterized by 1H-NMR and GPC spectra. The stability of P(DEAEMA-SVS) emulsion was studied by the surface tension and interfacial tension. The polymer P(DEAEMA-SVS) with the size of about 113 nm and the narrow particle size distribution form via N, N-Diethylaminoethyl methacrylate (DEAEMA) and sodium vinylsulfonate (SVS) of 1∶1 mole ratio as reaction monomers, which decrease the surface tension of water to 37.279 mN/m and the interfacial tension of water/paraffin wax to 5.492 mN/m. It is indicated that P(DEAEMA-SVS) polymer is an effective CO2-switchable O/W surfactant to stabilize emulsion as a only emulsifier. The surface activity and CO2 response of the polymer were evaluated by mixing the aqueous solution (1wt%) with paraffin wax. Bubbling CO2 for 30 min to the milky emulsion, it turns into clear and bubbling N2 for 30 min at 60℃, and converts to its original state, showing excellent cyclic performance of de-emulsification and re-emulsification process. The research results of emulsification mechanism show that the side-electron mobility and photogenerated electron-hole pairs separation. Chained tertiary amino groups of P(DEAEMA-SVS) polymer protonize and turn into hydrophilic quatemary ammonium salt to destroy the oil/water balance of the emulsion with bubbling CO2, while quatemary ammonium salt deprotonizes and returns into hydrophobic tertiary aminogroups with bubbling N2 at 60℃.
  • [1]
    JIE D, WANG Y, JIAN Z, et al. Multiple stimuli-responsive polymeric micelles for controlled release[J]. Soft Matter,2012,9(2):370-373.
    [2]
    ZHANG Q. Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant[J]. Langmuir,2012,28(14):5940-5946. DOI: 10.1021/la300051w
    [3]
    QIAO W, ZHENG Z, SHI Q. Synthesis and properties of a series of CO2 switchable surfactants with imidazoline group[J]. Journal of Surfactants & Detergents,2012,15(5):533-539.
    [4]
    ZHANG Y M, ZHANG Y D, WANG C, et al. CO2-responsive microemulsion: Reversible switching from an apparent single phase to near-complete phase separation[J]. Green Chemistry,2015,18(2):392-396.
    [5]
    JESSOP, P G, SU X, CUNNINGHAM MF. Switchable surfactants at the polystyrene-water interface: Effect of molecular structure[J]. Green Materials,2014,2(2):69-74. DOI: 10.1680/gmat.13.00015
    [6]
    HAN D, XIA T, BOISSIERE O, et al. General strategy for making CO2-switchable polymers[J]. Acs Macro Letters,2012,1(1):57-61. DOI: 10.1021/mz2000175
    [7]
    LIU Y. Switchable surfactants[J]. Science,2006,313(5789):958-960. DOI: 10.1126/science.1128142
    [8]
    ZHANG Y, YIN H, FENG Y. CO2-responsive anionic wormlike micelles based on natural erucic acid[J]. Green Materials,2014,2(2):95-103. DOI: 10.1680/gmat.13.00016
    [9]
    HAN D, BOISSIERE O, KUMAR S, et al. Two-way CO2-switchable triblock copolymer hydrogels[J]. Macromolecules,2012,45(18):7440-7445. DOI: 10.1021/ma3015189
    [10]
    BROWN P, BUTTS C P, EASTOE J. Stimuli-responsive surfactants[J]. Soft Matter,2013,9(8):2365-2374. DOI: 10.1039/c3sm27716j
    [11]
    LIU F, URBAN M W. Recent advances and challenges in designing stimuli-responsive polymers[J]. Progress in Polymer Science,2010,35(1-2):3-23. DOI: 10.1016/j.progpolymsci.2009.10.002
    [12]
    MORSE A J, DUPIN D, THOMPSON K L, et al. Novel pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes[J]. Langmuir the Acs Journal of Surfaces & Colloids,2012,28(32):11733-11740.
    [13]
    SCOTT L M. Designing the head group of CO2-triggered switchable surfactants[J]. Rsc Advances,2012,2(11):4925-4931. DOI: 10.1039/c2ra01242a
    [14]
    BROWN P, WASBROUGH M J, GURKAN B E, et al. CO2-responsive microemulsions based on reactive ionic liquids[J]. Langmuir,2014,30(15):4267-72. DOI: 10.1021/la500675g
    [15]
    HU J, LIU S. Responsive polymers for detection and sensing applications: Current status and future developments[J]. Macromolecules,2010,43(20):8315-8330. DOI: 10.1021/ma1005815
    [16]
    DESTRIBATS M, PINAUD F, LAPEYRE V, et al. Pickering emulsions stabilized by soft microgels: Influence of the emulsification process on particle interfacial organization and emulsion properties[J]. Langmuir,2013,29(40):12367-12374. DOI: 10.1021/la402921b
    [17]
    DESTRIBATS M, EYHARTS M, LAPEYRE V, et al. Impact of pNIPAM microgel size on its ability to stabilize pickering emulsions[J]. Langmuir the Acs Journal of Surfaces & Colloids,2014,30(7):1768-1777.
    [18]
    JIANG J, JIANG J, LIU K, et al. Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant[J]. Angewandte Chemie,2013,52(47):12373-12376. DOI: 10.1002/anie.201305947
    [19]
    MORSE A J, ARMES S P, THONPSON K C, et al. Novel pickering emulsifiers based on pH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes[J]. Langmuir,2013,29(18):5466-5475. DOI: 10.1021/la400786a
    [20]
    ZHANG Q Y, WANG G Q, YAN W J, et al. Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes[J]. Macromolecules,2013,46(4):1261-1267. DOI: 10.1021/ma302505r
    [21]
    MORSE A J, ARMES S P, MILLS P, et al. Stopped-flow kinetics of pH-responsive polyamine latexes: How fast is the latex-to-microgel transition?[J]. Langmuir the ACS Journal of Surfaces& Colloids,2013,29(49):15209-15216.
    [22]
    WANG X, JIANG G H, LI X, et al. Synthesis of multi-responsive polymeric nanocarriers for controlled release of bioactive agents[J]. Polymer Chemistry,2013,4(17):4574-4577. DOI: 10.1039/c3py00746d
    [23]
    LU H S, GUAN X Q, DAI S S, et al. Application of CO2-triggered switchable surfactants to form emulsion with xinjiang heavy oil[J]. Journal of Dispersion Science and Technology,2014,35(5):655-662. DOI: 10.1080/01932691.2013.803254
    [24]
    LU H, GUAN X Q, WANG B G, et al. CO2-switchable oil/water emulsion for pipeline transport of heavy oil[J]. Journal of Surfactants and Detergents,2015,18(5):773-782. DOI: 10.1007/s11743-015-1712-8
    [25]
    RICHTERING W. Responsive emulsions stabilized by stimuli-sensitive microgels: Emulsions with special non-Pickering properties[J]. Langmuir the ACS Journal of Surfaces & Colloids,2014,28(50):17218-17226.
    [26]
    WANG J J, WANG H F, LI Y, et al. Formation and CO2/N2 switchable ability of a novel copolymer poly(N, N-diethylaminoethyl methacrylate-co-codium vinyl-sulfonate)[J]. Polymer Science, Series A,2018,60(5):1-6.
    [27]
    KUMAR S, TONG X, DORY Y, et al. A CO2-switchable polymer brush for reversible capture and release of proteins[J]. Chemical Communications,2013,49(1):90-92. DOI: 10.1039/C2CC36284H
  • Cited by

    Periodical cited type(10)

    1. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 连续光纤激光切割金属薄壁材料工艺研究. 红外与激光工程. 2024(02): 33-43 .
    2. 陶洋,李存静,逄增媛,张典堂. 展宽布/网胎针刺C/C复合材料制备及力学性能. 复合材料学报. 2024(04): 1934-1944 . 本站查看
    3. 董志刚,王中旺,冉乙川,鲍岩,康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展. 机械工程学报. 2024(09): 26-56 .
    4. 席翔,李海龙,陈友元,裴景奇,廖城坤,薛琳,储洪强,冉千平. 碳纤维增强碳基复合材料的介电性能对应力的自感知. 高分子材料科学与工程. 2024(05): 115-124 .
    5. 钱奇伟,张昕,杨贞军,沈镇,校金友. 基于CT图像深度学习的三维编织C/C复合材料微观组分与缺陷智能识别. 复合材料学报. 2024(07): 3536-3543 . 本站查看
    6. 翟兆阳,李欣欣,张延超,刘忠明,杜春华,张华明. 基于正交试验的金属薄壁材料激光切割工艺优化. 中国机械工程. 2024(07): 1279-1289 .
    7. 何金玲. 纤维复材浆料流变性能分析及矿混匀质量应用研究. 粘接. 2024(09): 87-90 .
    8. 姚先龙. 碳基复合材料的应用及相关制备方法. 信息记录材料. 2023(01): 36-38 .
    9. 石磊,罗浩,罗瑞盈. 胶层厚度对C/C复合材料剪切粘接性能的影响. 炭素技术. 2023(04): 22-26 .
    10. 刘科众,陈舟,王泽鹏,韩保恒. C/C复合材料增密过程孔隙结构及演化研究. 机械设计与制造工程. 2022(10): 33-36 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1072) PDF downloads (66) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return