Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003
Citation: XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307. doi: 10.13801/j.cnki.fhclxb.20210520.003

Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae

doi: 10.13801/j.cnki.fhclxb.20210520.003
  • Received Date: 2021-03-19
  • Accepted Date: 2021-05-11
  • Rev Recd Date: 2021-04-07
  • Available Online: 2021-05-20
  • Publish Date: 2021-03-01
  • In view of the frequent occurrence of harmful algal blooms in rivers, lakes and reservoirs, high-efficiency flocculants and natural clay minerals are commonly used to remove algae, but there are some problems, such as large amounts of clay minerals, silt and thickening of sediments. The sunken algae will still wait for an opportunity to erupt and other shortcomings, unable to achieve a satisfactory algae removal effect. In this paper, a lightweight floating mineral pumice was used as a carrier to prepare a chitosan-pumice floating composite algae-removing material that does not produce sediment. With microcrystal aeruginosa as the test object, the material ratio, dosage, the effect of pH and reaction time of the algae suspension on its flocculation and algae removal performance, the surface morphology and composition of the composite algae removal material were characterized by SEM and XRF, and the algae removal mechanism of the material was discussed by Zeta potential measurement. The results show that the optimal preparation and use conditions are: chitosan-pumice ratio is 10∶1, the pH of the algae suspension is 7, 100 mL of the algae suspension is added 6 g of the composite algae-removing material, and the reaction time is 180 minutes, the maximum removal rate of the composite material for turbidity (NTU) is 94%, and the removal rate for Chlorophyll a (Chl-a) can reach 98%; the reason for its excellent performance is that the surface of the material is uneven, large surface area, and its Zeta potential is positive. It is easy to adsorb and flocculate and neutralize the charge with negatively charged algae, causing the algae cells to continuously aggregate to form large flocs, showing a good floating algae removal effect.

     

  • loading
  • [1]
    宋靖珂, 王学江, 王佳忆, 等. 漂浮型Ag2CrO4/g-C3N4/TiO2可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6):1914-1921.

    SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Algae rem oval performance of floating Ag2CrO4/g-C3N4/TiO2 visible light catalytic material[J]. Acta Materiae Compositae Sinica,2021,38(6):1914-1921(in Chinese).
    [2]
    WANG S K, WANG F, HU Y R, et al. Magnetic flocculant for high efficiency harvesting of microalgal cells[J]. ACS Applied Materials & Interfaces,2014,6(1):109-115.
    [3]
    YUAN Z, WEN Y L, LI J L, et al. Harvesting Chlorella vulgaris by magnetic flocculation using Fe3O4 coating with polyaluminium chloride and polyacrylamide[J]. Bioresource Technology,2015,198:789-796. doi: 10.1016/j.biortech.2015.09.087
    [4]
    YANG Z, SHANG Y, LU Y, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants[J]. Chemical Engineering Journal,2011,172(1):287-295. doi: 10.1016/j.cej.2011.05.106
    [5]
    张文轩, 杨琥, 程镕时, 等. 壳聚糖改性絮凝剂絮凝性能的研究[J]. 高分子通报, 2010(4):49-54.

    ZHANG Wenxuan, YANG Hu, CHENG Ronshi, et al. Study on flocculation performance of chitosan modified flocculant[J]. Polymer Bulletin,2010(4):49-54(in Chinese).
    [6]
    邹华, 潘纲, 阮文权. 壳聚糖改性粘土絮凝除藻的机制探讨[J]. 环境科学与技术, 2007, 25(6):8-9, 13. doi: 10.3969/j.issn.1003-6504.2007.06.004

    ZOU Hua, PAN Gang, RUAN Wenquan. Mechanism of algae removal by chitosan modified clay[J]. Environmental Science and Technology,2007,25(6):8-9, 13(in Chinese). doi: 10.3969/j.issn.1003-6504.2007.06.004
    [7]
    靳晓光, 张洪刚, 潘纲. 阳离子化壳聚糖改性黏土絮凝去除藻[J]. 环境工程学报, 2018, 12(9):2437-2445. doi: 10.12030/j.cjee.201803110

    JIN Xiaoguang, ZHANG Honggang, PAN Gang. Algae removal by cationic chitosan modified clay[J]. Journal of Environmental Engineering,2018,12(9):2437-2445(in Chinese). doi: 10.12030/j.cjee.201803110
    [8]
    GURBUZ F, CODD G A. Microcystin removal by a naturally-occurring substance: pumice[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(3): 323–327.
    [9]
    张洁. 秸秆分解产物光致过氧化氢对铜绿微囊藻抑制效能研究[D]. 重庆: 重庆大学, 2016.

    ZHANG Jie. Study on the inhibition effect of straw decomposition product photoinduced hydrogen peroxide on Microcystis aeruginosa[D]. Chongqing: Chongqing University, 2016(in Chinese).
    [10]
    严群, 韩冬雪, 汪宏, 等. 藻类生长期对改性蛭石絮凝除藻的影响[J]. 环境工程学报, 2017, 11(3):1621-1626. doi: 10.12030/j.cjee.201511114

    YAN Qun, HAN Dongxue, WANG Hong, et al. Effect of algae growth period on algae removal by modified vermiculite flocculation[J]. Journal of Environmental Engineering,2017,11(3):1621-1626(in Chinese). doi: 10.12030/j.cjee.201511114
    [11]
    杨磊, 张高科, 汤丹丹, 等. 壳聚糖改性红壤去除铜绿微囊藻[J]. 环境工程学报, 2015, 9(8):3745-3750. doi: 10.12030/j.cjee.20150825

    YANG Lei, ZHANG Gaoke, TANG Dandan, et al. Removal of Microcystis aeruginosa from chitosan modified red soil[J]. Journal of Environmental Engineering,2015,9(8):3745-3750(in Chinese). doi: 10.12030/j.cjee.20150825
    [12]
    UMMALYMA S B, MATHEW A K, PANDEY A, et al. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation[J]. Bioresource Technology,2016,213:216-221. doi: 10.1016/j.biortech.2016.03.114
    [13]
    VU H P, NGUYEN L N, LESAGE G, et al. Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris[J]. Environmental Technology & Innovation,2020,17:1-8.
    [14]
    PEI H Y, MA C X, HU W R, et al. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes[J]. Bioresource Technology,2014,151:314-322. doi: 10.1016/j.biortech.2013.10.077
    [15]
    RASHID N, REHMAN S U, HAN J I. Rapid harvesting of freshwater microalgae using chitosan[J]. Process Biochemistry,2013,48(7):1107-1110. doi: 10.1016/j.procbio.2013.04.018
    [16]
    CHUA E T, ELTANAHY E, JUNG H, et al. Efficient harvesting of nannochloropsis microalgae via optimized chitosan-mediated flocculation[J]. Global Challenges,2019,3(1):1-7.
    [17]
    PRADANA Y S, KUSUMASTUTI Y, RAHMA F N, et al. Chitosan flocculation-sedimentation for harvesting selected microalgae species grown in monoculture and mixed cultures[J]. Chemical Engineering Transactions,2017,56:1549-1554.
    [18]
    GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid &Interface Science,2011,169(1):1-12.
    [19]
    YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research,2016,95:59-89. doi: 10.1016/j.watres.2016.02.068
    [20]
    WANG T, YANG W L, HONG Y, et al. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae[J]. Chemical Engineering Journal,2016,297:304-314. doi: 10.1016/j.cej.2016.03.038
    [21]
    YUAN Y, ZHANG H, PAN G. Flocculation of cyanobacterial cells using coal fly ash modified chitosan[J]. Water Research,2016,97:11-18. doi: 10.1016/j.watres.2015.12.003
    [22]
    CHENG Y S, ZHENG Y, LABAVITCH J M, et al. The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella[J]. Process Biochemistry,2011,46(10):1927-1933. doi: 10.1016/j.procbio.2011.06.021
    [23]
    BEACH E S, ECKELMAN M J, CUI Z, et al. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae neochloris oleoabundans[J]. Bioresource Technology,2012,121:445-449. doi: 10.1016/j.biortech.2012.06.012
    [24]
    DONG C L, CHEN W, CHENG L. Flocculation of algal cells by amphoteric chitosan-based flocculant[J]. Bioresource Technology,2014,170:239-247. doi: 10.1016/j.biortech.2014.07.108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (826) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return