Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003
Citation: SUN Fuchang, PAN Yuchen, ZHANG Yunfei, et al. Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1131-1140. doi: 10.13801/j.cnki.fhclxb.20210517.003

Preparation and properties of PEDOT:PSS/poly(acrylamide-co-methacrylic acid) conductive hydrogels

doi: 10.13801/j.cnki.fhclxb.20210517.003
  • Received Date: 2021-03-23
  • Accepted Date: 2021-05-10
  • Rev Recd Date: 2021-04-26
  • Available Online: 2021-05-17
  • Publish Date: 2021-03-01
  • In this work, in-situ free-radical solution polymerization method was used to fabricate poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(acrylamide-co-methacrylic acid) (P(AAM-MAA)) conductive hydrogels. The composition and morphology were characterized by FTIR, Raman, TGA, and SEM, respectively. The visible-light transmittance, electrical conductivity, tensile properties, and strain sensitivity were also tested. The results show that PEDOT:PSS is well dispersed in the P(AAM-MAA) hydrogel network, and the hydrogel shows good conductivity and transparency (>50%). The introduction of MAA not only improves the electrical conductivity but also enhances the tensile properties and strain sensitivity of the hydrogel. When the amount of MAA increases from 0wt% to 2.52wt%, the conductivity of PEDOT:PSS/P(AAM-MAA) rises from 0.043 S·m−1 to 0.060 S·m−1, and the tensile strength, elongation at break increases from 46 kPa, 76% to 68 kPa, 129%, respectively. PEDOT:PSS/P(AAM-MAA) also has demonstrated excellent linear sensitivity (R2>0.983) (strain: 0%-70%). The resistance variation curve shows that the prepared hydrogels can be used as sensors to monitor various small movements of human body through the resistance signal change.

     

  • loading
  • [1]
    朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2010-2024.

    ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2010-2024(in Chinese).
    [2]
    CAI G F, WANG J X, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science,2017,4(2):1600190. doi: 10.1002/advs.201600190
    [3]
    JEONG H T, DU J F, KIM Y R, et al. Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites[J]. Journal of Alloys and Compounds,2019,777:59-64. doi: 10.1016/j.jallcom.2018.10.047
    [4]
    WANG C, HU K, ZHAO C C, et al. Customization of conductive elastomer based on PVA/PEI for stretchable sensors[J]. Small,2020,16:1904758. doi: 10.1002/smll.201904758
    [5]
    佘小红, 杜娟, 朱雯莉. 高强度聚苯胺-聚丙烯酸/聚丙烯酰胺导电水凝胶的制备与性能[J]. 复合材料学报, 2021, 38(4):1223-1230.

    SHE Xiaohong, DU Juan, ZHU Wenli. Preparation and properties of strong PANI-PAA/PAM conductive hydrogel[J]. Acta Materiae Compositae Sinica,2021,38(4):1223-1230(in Chinese).
    [6]
    SUN X, QIN Z H, YE L, et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chemical Engineering Journal,2020,382:122832. doi: 10.1016/j.cej.2019.122832
    [7]
    CAI Y T, QIN J B, LI W M, et al. A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application[J]. Journal of Materials Chemistry A,2019,7(47):27099-27109. doi: 10.1039/C9TA11084D
    [8]
    YOUSSEF A M, HASANIN M S, ABD EL-AZIZ M E, et al. Conducting chitosan/hydroxylethyl cellulose/polyaniline bionanocomposites hydrogel based on graphene oxide doped with Ag-NPs[J]. International Journal of Biological Macromolecules,2021,167:1435-1444. doi: 10.1016/j.ijbiomac.2020.11.097
    [9]
    LI Y Q, ZHANG H, NI S Z, et al. In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network[J]. Materials Letters,2018,232:175-178. doi: 10.1016/j.matlet.2018.08.115
    [10]
    ZHOU Q Q, TENG W L, JIN Y H, et al. Highly-conductive PEDOT: PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability[J]. Electrochimica Acta,2020,334:135530. doi: 10.1016/j.electacta.2019.135530
    [11]
    YANG Y, DENG H, FU Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers,2020,4:3130-3152. doi: 10.1039/D0QM00308E
    [12]
    SHI H, LIU C C, JIANG Q L, et al. Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review[J]. Advanced Electronic Materials,2015,1:1500017. doi: 10.1002/aelm.201500017
    [13]
    OUYANG J Y. “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices[J]. Displays,2013,34(5):423-436. doi: 10.1016/j.displa.2013.08.007
    [14]
    ZHANG H, YUE M Q, WANG T T, et al. Conductive hydrogel-based flexible strain sneors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents[J]. New Journal of Chemistry,2021,45:4647-4657. doi: 10.1039/D0NJ05880G
    [15]
    CAO S, TONG X, DAI K, et al. A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly(N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity[J]. Journal of Materials Chemistry A,2019,7:8204-8209. doi: 10.1039/C9TA00618D
    [16]
    陈裙凤, 刘茜, 杨嘉玮, 等. 纤维素离子凝胶的制备及性能研究[J]. 复合材料学报, 2021, 38(12):4247-4254.

    CHEN Qunfeng, LIU Xi, YANG Jiawei, et al. Cellulose-base ionic gel with high performance[J]. Acta Materiae Compositae Sinica,2021,38(12):4247-4254(in Chinese).
    [17]
    WU Q, WEI J J, XU B, et al. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability[J]. Scientific Reports,2017,7:41566. doi: 10.1038/srep41566
    [18]
    SUN N N, JI R, ZHANG F F, et al. Structural evolution in poly(acrylic-co-acrylamide) pH-responsive hydrogels by low-field NMR[J]. Materials Today Communications,2020,22:100748. doi: 10.1016/j.mtcomm.2019.100748
    [19]
    WEI C C, XU Z Q, HAN F H, et al. Preparation and characterization of poly(acrylic acid-co-acrylamide)/montmorillonite composite and its application for methylene blue adsorption[J]. Colloid and Polymer Science,2018,296(4):653-667. doi: 10.1007/s00396-018-4277-z
    [20]
    KISHI R, KUBOTA K, MIURA T, et al. Mechanically tough double-network hydrogels with high electronic conductivity[J]. Journal of Materials Chemistry C,2014,2(4):736-743. doi: 10.1039/C3TC31999G
    [21]
    DU G L, GAO G R, HOU R X, et al. Tough and fatigue resistant biomimetic hydrogels of interlaced self-assembled conjugated polymer belts with a polyelectrolyte network[J]. Chemistry of Materials,2014,26(11):3522-3529. doi: 10.1021/cm501095s
    [22]
    WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon,2018,126:360-371. doi: 10.1016/j.carbon.2017.10.034
    [23]
    ZHANG Y F, GUO M M, ZHANG Y, et al. Flexible, stretchable and conductive PVA/PEDOT: PSS composite hydrogels prepared by SIPN strategy[J]. Polymer Testing,2020,81:106213. doi: 10.1016/j.polymertesting.2019.106213
    [24]
    LEE J H, JEONG Y R, LEE G, et al. Highly conductive, stretchable, and transparent PEDOT: PSS electrodes fabricated with triblock copolymer additives and acid treatment[J]. ACS Applied Materials & Interfaces,2018,10(33):28027-28035.
    [25]
    TANPICHAI S, OKSMAN K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery[J]. Composites Part A: Applied Science and Manufacturing,2016,88:226-233. doi: 10.1016/j.compositesa.2016.06.002
    [26]
    CAI N, LI C, LUO X G, et al. A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol[J]. Journal of Materials Science,2016,51(2):797-808. doi: 10.1007/s10853-015-9403-4
    [27]
    LIU C X, LI M D, LU B S, et al. High-sensitivity crack-based flexible strain sensor with dual hydrogen bond-assisted structure for monitoring tiny human motions and writing behavior[J]. Organic Electronics,2021,88:105977. doi: 10.1016/j.orgel.2020.105977
    [28]
    CHOI D Y, KIM M H, OH Y S, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring[J]. ACS Applied Materials & Interfaces,2017,9(2):1770-1780.
    [29]
    SEYEDIN M Z, RAZAL J M, INNIS P C, et al. Strain-responsive polyurethane/PEDOT: PSS elastomeric composite fibers with high electrical conductivity[J]. Advanced Functional Materials,2014,24(20):2957-2966. doi: 10.1002/adfm.201303905
    [30]
    张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese).
    [31]
    WU H G, LIU Q, CHEN H W, et al. Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion[J]. Nanoscale,2018,10(37):17512-1751. doi: 10.1039/C8NR05404E
    [32]
    YE F M, LI M, KE D N, et al. Ultrafast self-healing and injectable conductive hydrogel for strain and pressure sensors[J]. Advance materials technology,2019,4(9):1900346.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2656) PDF downloads(247) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return