Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002
Citation: JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 645-655. doi: 10.13801/j.cnki.fhclxb.20210513.002

Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites

doi: 10.13801/j.cnki.fhclxb.20210513.002
  • Received Date: 2021-03-08
  • Accepted Date: 2021-04-27
  • Rev Recd Date: 2021-04-26
  • Available Online: 2021-05-13
  • Publish Date: 2022-02-01
  • The SiO2 particles with diameter of 1 μm, 30 nm and 100 nm were used as additive particles and low-density polyethylene (LDPE) as matrix to prepare the three kinds of SiO2/LDPE composites. The crystallization behavior and crystallinity of LDPE and three kinds of SiO2/LDPE composites were analyzed, the relative dielectric constant εr and loss factor tanδ changes of each material with frequency were measured, and the conductance current and space charge characteristics of the composites were investigated. The results show that the smaller the particle size is, the smaller the crystal size and grains spacing of the composite materials are. After adding 30 nm SiO2 particles, the crystallinity increases significantly. The microstructure formed by adding 100 nm SiO2 particles can effectively limit the chain segment movement, which makes it difficult to establish the polarization of the composites. The addition of large size particles can destroy the original crystal structure, and the new crystal structure can promote the carrier migration. Among the three SiO2 particles, the addition of SiO2 particles at 30 nm can effectively inhibit the space charge, while the addition of SiO2 particles at 100 nm can cause the heterogeneous charge accumulation near the electrode.

     

  • loading
  • [1]
    杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1):180-191.

    DU Boxue, HAN Chenlei, LI Jin, et al. Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society,2019,34(1):180-191(in Chinese).
    [2]
    HANLEY T L, BURFORD R P, FLEMING R J, et al. A general review of polymeric insulation for use in HVDC cable[J]. IEEE Electrical Insulation Magazine,2003,19(1):13-24. doi: 10.1109/MEI.2003.1178104
    [3]
    SINGHA S, THOMAS M J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz−1 GHz[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2008,15(1):2-11.
    [4]
    郑煜, 吴建东, 王俏华, 等. 空间电荷与直流电导联合测试技术 用于纳米 MgO 抑制 XLPE 中空间电荷的研究[J]. 电工技术学报, 2012, 27(5):126-131.

    ZHENG Yu, WU Jiandong, WANG Qiaohua, et al. Research on the space charge suppressing mechanism of Nano-MgO in XLPE with a Joint measuring technology of dc conduction and space charge[J]. Transactions of China Electrotechnical Society,2012,27(5):126-131(in Chinese).
    [5]
    梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003: 121-125.

    LIANG Xidong, CHEN Changyu, ZHOU Yuanxiang. High Voltage Engineering[M]. Beijing: Tsinghua University Press, 2003: 121-125(in Chinese).
    [6]
    周远翔, 沙彦超, 陈维江. 变压器油与绝缘纸板电导特性研究[J]. 电网技术, 2013, 37(9):2527-2533.

    ZHOU Yuanxiang, SHA Yanchao, CHEN Weijiang. Conduction characteristics in transformer oil and electrical insulation paper[J]. Power System Technology,2013,37(9):2527-2533(in Chinese).
    [7]
    周远翔, 张灵, 沙彦超, 等. 直流电场下低密度聚乙烯纳米介质 空间电荷特性的数值分析[J]. 高电压技术, 2013, 39(8):1813-1820. doi: 10.3969/j.issn.1003-6520.2013.08.002

    ZHOU Yuanxiang, ZHANG Ling, SHA Yanchao, et al. Numerical analysis of space charge characteristics in low-density polyethylene nanocomposite under external DC electric field[J]. High Voltage Engineering,2013,39(8):1813-1820(in Chinese). doi: 10.3969/j.issn.1003-6520.2013.08.002
    [8]
    艾叶, 李春阳, 赵洪, 等. 纳米SiO2对交联聚乙烯交/直流击穿强度和耐电树枝性能影响[J]. 复合材料学报, 2019, 36(9):2031-2041.

    AI Ye, LI Chunyang, ZHAO Hong, et al. Effects of nano SiO2 on AC/DC breakdown strength and electrical treeing resistance of cross-linked polyethylene[J]. Acta Materiae Compositae Sinica,2019,36(9):2031-2041(in Chinese).
    [9]
    程羽佳, 张晓虹, 郭宁, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 复合材料学报, 2016, 33(7):1351-1360.

    CHENG Yujia, ZHANG Xiaohong, GUO Ning, et al. Dielectric properties of nano ZnO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1351-1360(in Chinese).
    [10]
    徐明忠, 赵洪, 吉超, 等. MgO/LDPE 纳米复合材料制备及其 空间电荷特性[J]. 高电压技术, 2012, 38(3):684-690.

    XU Mingzhong, ZHAO Hong, JI Chao, et al. Preparation of MgO/LDPE nanocomposits and its space charge property[J]. High Voltage Engineering,2012,38(3):684-690(in Chinese).
    [11]
    吴建东, 尹毅, 兰莉, 等. 纳米填充浓度对 LDPE/Silica 纳米 复合介质中空间电荷行为的影响[J]. 中国电机工程学报, 2012, 32(28):177-183.

    WU Jiandong, YIN Yi, LAN Li, et al. The influence of nano-filler concentration on space charge behavior in LDPE/Silica nanocomposites[J]. Proceedings of the CESS,2012,32(28):177-183(in Chinese).
    [12]
    FLEMING R J, AMMALA A, CASEY P S, et al. Conduction and space charge in LDPE/TiO2 nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,18(1):15-23.
    [13]
    陈少卿, 成霞, 王霞, 等. 纳米氧化锌/聚乙烯复合材料中空 间电荷及体积电阻率的研究[J]. 绝缘材料, 2007, 40(2):48-53. doi: 10.3969/j.issn.1009-9239.2007.02.016

    CHEN Shaoqing, CHENG Xia, WANG Xia, et al. Study of space charge distribution and volume resistivity in composite of polyethylene/nano zinc oxide[J]. Insulating Materials,2007,40(2):48-53(in Chinese). doi: 10.3969/j.issn.1009-9239.2007.02.016
    [14]
    牟海龙, 郝笑龙, 肖泽芳, 等. 改性纳米或微米SiO2的分散方法对木粉-SiO2/聚丙烯复合材料力学性能的影响[J]. 复合材料学报, 2007, 40(2):48-53.

    MOU Hailong, HAO Xiaolong, XIAO Zefang, et al. Effect of dispersion method of modified nano or micro SiO2 on mechanical properties of wood flour-SiO2/polypropylene composites[J]. Acta Materiae Compositae Sinica,2007,40(2):48-53(in Chinese).
    [15]
    迟晓红, 程璐, 刘文凤, 等. 聚丙烯基复合介质的结晶结构调控与性能提升[J]. 高电压技术, 2019(7):1-8.

    CHI Xiaohong, CHENG Lu, LIU Wenfeng, et al. Crystal structure regulation and performance improvement of polypropylene matrix composites[J]. High Voltage Technology,2019(7):1-8(in Chinese).
    [16]
    中国国家标准化管理委员会. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials: GB/T 1410—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [17]
    梁基照. HDPE熔融热焓与结晶度的测定[J]. 广州化工, 1994, 22(4):27-30.

    LIANG J Z. Measurement of the melting enthalpy and crystallizability for HDPES[J]. Guangzhou Chemical Industry and Technology,1994,22(4):27-30(in Chinese).
    [18]
    迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32(1):76-84.

    CHI X H, YU L, ZHENG J, et al. Crystallization morphology and electrical tree resistance characteristics of montmoril-lonite/polypropylene composites[J]. Acta Materiae Compositae Sinica,2015,32(1):76-84(in Chinese).
    [19]
    BRUGGEMAN D A G. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances[J]. Annalen der Physik,1935,24:636-664.
    [20]
    SIMMONS J G. Theory of metallic contacts on high resistivity solids (II) deep traps[J]. Journal of the Physics & Chemistry of Solids,1971,32(11):2581-2591.
    [21]
    BEYER J, MORSHUIS P H F, SMIT J J. Conduction current measurements on polycarbonates subjected to electrical and thermal stress[C]//Conference on Electrical Insulation & Dielectric Phenomena. IEEE, 2000.
    [22]
    熊欣, 宋常立, 仲玉林, 表面物理[M]. 沈阳: 辽宁科学技术出版社, 1985: 382-396, 578-589.

    XIONG X, SONG C L, ZHONG Y L. Surface physics[M]. Shenyang: Liaoning Science and Technology Publishing House, 1985: 382-396, 578-589(in Chinese).
    [23]
    KWAN C K. Dielectric phenomena in solids[M]. London: Elsevier Academic Press, 2004: 400-401.
    [24]
    GU C. Smoothing spline ANOVA models[M]. New York: Springer Publishing, 2002: 23-237.
    [25]
    陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982: 162–234.

    CHEN J D, LIU Z Y. Dielectric physics[M]. Beijing: China Machine Press, 1982: 162–234 (in Chinese).
    [26]
    王霞, 陈少卿, 成霞, 等. 电声脉冲法测量聚合物表面陷阱能级分布[J]. 中国电机工程学报, 2009, 29(1):127-132. doi: 10.3321/j.issn:0258-8013.2009.01.020

    WANG X, CHEN S Q, CHENG X, et al. Measuring energy distribution of surface trap in polymer insulation by PEA method[J]. Proceedings of the CSEE,2009,29(1):127-132(in Chinese). doi: 10.3321/j.issn:0258-8013.2009.01.020
    [27]
    LAU K, VAUGHAN A, CHEN G, et al. On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation,2014,21(1):340-351.
    [28]
    刘付德, 凌志远, 谢进, 等. 固体电介质中电致陷阱产生与电子捕获动力学[J]. 华南理工大学学报(自然科学版), 1993(1):100-107.

    LIU Fude, LING Zhiyuan, XIE Jin, et, al. Kinetics of trap generation and electrons capture in solid dielectrics under high electrical strength[J]. Journal of South China University of Technology (Natural Science),1993(1):100-107(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1035) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return