Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
SHI Chang, WANG Jihui, ZHU Jun, et al. Flatwise compression properties of trapezoidal lattice-web reinforced foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 590-600. doi: 10.13801/j.cnki.fhclxb.20210506.002
Citation: SHI Chang, WANG Jihui, ZHU Jun, et al. Flatwise compression properties of trapezoidal lattice-web reinforced foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 590-600. doi: 10.13801/j.cnki.fhclxb.20210506.002

Flatwise compression properties of trapezoidal lattice-web reinforced foam core sandwich composites

doi: 10.13801/j.cnki.fhclxb.20210506.002
  • Received Date: 2021-03-08
  • Accepted Date: 2021-04-30
  • Rev Recd Date: 2021-04-13
  • Available Online: 2021-05-06
  • Publish Date: 2022-02-01
  • Trapezoidal lattice-web reinforced foam core sandwich composites with different structural parameters were designed and manufactured by the vacuum assisted resin infusion (VARI) process. The failure modes and mechanical properties of the sandwich panels in flatwise compression loading were studied experimentally. Also, the effects of structural parameters (specimen size, lattice-web angle, lattice-web thickness) on specific compression strength, specific compression modulus and specific energy absorption were investigated. The results show that the main failure modes of the lattice-web reinforced sandwich panels are the fracture and buckling of lattice-web, and the synergistic enhancement effect between foam core and lattice-web is revealed. Compared with the control specimen, the specific compression strength, specific compression modulus and specific energy absorption of the sandwich panel with 60° lattice-web increase by 89.4%, 137.9% and 45.2%, respectively. The compression properties increase with the increase of the angle and thickness of lattice-web. The conclusions above provide reference for the design and application of lightweight sandwich composites in the ship and ocean engineering.

     

  • loading
  • [1]
    BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering,2018,142:221-240. doi: 10.1016/j.compositesb.2018.01.027
    [2]
    杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007(2):419-424. doi: 10.3321/j.issn:1000-6893.2007.02.033

    DU Shanyi, ZHANG Jifeng, ZHANG Boming. Overview of application and research on advanced composite grid structures[J]. Acta Aeronautica et Astronautica Sinica,2007(2):419-424(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.02.033
    [3]
    朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(2):1-7. doi: 10.3404/j.issn.1672-7649.2018.02.001

    ZHU Zixu, ZHU Xi, LI Yongqing, et al. Present researches about sandwich composite structures and its applies in ship industry[J]. Ship Science and Technology,2018,40(2):1-7(in Chinese). doi: 10.3404/j.issn.1672-7649.2018.02.001
    [4]
    FANG H, MAO Y, LIU W, et al. Manufacturing and evaluation of large-scale composite bumper system for bridge pier protection against ship collision[J]. Composite Structures,2016,158:187-198. doi: 10.1016/j.compstruct.2016.09.013
    [5]
    ZHU D, SHI H, FANG H, et al. Fiber reinforced composites sandwich panels with web reinforced wood core for building floor applications[J]. Composites Part B: Engineering,2018,150:196-211. doi: 10.1016/j.compositesb.2018.05.048
    [6]
    王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12):169-177.

    WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials[J]. Journal of Textile Research,2019,40(12):169-177(in Chinese).
    [7]
    徐学宏, 郑义珠, 陈晨, 等. 缝合泡沫夹层复合材料力学性能研究进展[J]. 复合材料科学与工程, 2020(9):118-122. doi: 10.3969/j.issn.1003-0999.2020.09.019

    XU Xuehong, ZHENG Yizhu, CHEN Chen, et al. Research progress on the mechanical properties of stitched foam-core sandwich composites[J]. Composites Science and Engineering,2020(9):118-122(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.09.019
    [8]
    马元春, 韩海涛, 卢子兴, 等. 缝纫泡沫夹芯复合材料失效强度的理论预测与试验验证[J]. 复合材料学报, 2010, 27(5):108-115.

    MA Yuanchun, HAN Haitao, LU Zixing, et al. Theoretical prediction and experimental study of the failure strength of stitched foam-core sandwich composites[J]. Acta Materiae Compositae Sinica,2010,27(5):108-115(in Chinese).
    [9]
    王裕龙, 许希武, 毛春见. 缝合复合材料层板低速冲击损伤数值模拟[J]. 复合材料学报, 2014, 31(3):715-724.

    WANG Yulong, XU Xiwu, MAO Chunjian. Numerical simulation of low-velocity impact damage on stitched compo-site laminates[J]. Acta Materiae Compositae Sinica,2014,31(3):715-724(in Chinese).
    [10]
    MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part A: Applied Science and Manufacturing,2020,139:106-128.
    [11]
    BI J P, DANG X D, WANG X L, et al. Experimental study on mechanical properties of X-Cor sandwich[J]. Materials Science Forum,2011,686:411-418. doi: 10.4028/www.scientific.net/MSF.686.411
    [12]
    郑锡涛, 孙秦, 李野, 等. 全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定[J]. 复合材料学报, 2006, 23(6):29-36. doi: 10.3321/j.issn:1000-3851.2006.06.005

    ZHENG Xitao, SUN Qin, LI Ye, et al. Mechanical behavior and damage tolerance tests of composites through-thickness stitched foam sandwich panels[J]. Acta Materiae Compositae Sinica,2006,23(6):29-36(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.005
    [13]
    魏凯耀, 曾竟成, 杜刚, 等. 整体缝合夹芯结构复合材料压缩性能[J]. 复合材料学报, 2016, 33(6):1234-1241.

    WEI Kaiyao, ZENG Jingcheng, DU Gang, et al. Compression performance of integrated stitched sandwich structure composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1234-1241(in Chinese).
    [14]
    仇艳慧, 徐庆林, 尹昌平, 等. 缝合增强泡沫夹芯结构复合材料力学性能研究[J]. 玻璃钢/复合材料, 2017(10):46-52.

    CHOU Yanhui, XU Qinglin, YIIN Changping, et al. Mechanical properties of suturing reinforced foam sandwich structure composites[J]. Fiber Reinforced Plastics/Composites,2017(10):46-52(in Chinese).
    [15]
    RAEISI S, KADKHODAPOUR J, TOVAR A. Mechanical properties and energy absorbing capabilities of Z-pinned aluminum foam sandwich[J]. Composite Structures,2019,214:34-46. doi: 10.1016/j.compstruct.2019.01.095
    [16]
    NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental analysis of the through-thickness compression properties of z-pinned sandwich composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(11):1673-1680. doi: 10.1016/j.compositesa.2011.07.020
    [17]
    史慧媛, 刘伟庆, 方海, 等. GFRP复合材料-轻木夹芯梁弯曲疲劳性能试验[J]. 复合材料学报, 2018, 35(5):1114-1122.

    SHI Huiyuan, LIU Weiqing, FANG Hai, et al. Experimental research on flexural fatigue behavior of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica,2018,35(5):1114-1122(in Chinese).
    [18]
    WANG L, LIU W, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2014,67:270-279. doi: 10.1016/j.compositesb.2014.07.003
    [19]
    ZHAO T, JIANG Y, ZHU Y, et al. An experimental investigation on low-velocity impact response of a novel corrugated sandwiched composite structure[J]. Composite Structures,2020,252:112676. doi: 10.1016/j.compstruct.2020.112676
    [20]
    BAHABADI H M, FARROKHABADI A, RAHIMI G H. Investigation of debonding growth between composite skins and corrugated foam-composite core in sandwich panels under bending loading[J]. Engineering Fracture Mechanics,2020,230:106987. doi: 10.1016/j.engfracmech.2020.106987
    [21]
    WU Z, LIU W, WANG L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading[J]. Composites Part B: Engineering,2014,60:329-340. doi: 10.1016/j.compositesb.2013.12.078
    [22]
    CHEN J, FANG H, LIU W, et al. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression[J]. Composites Part B: Engineering,2018,153:295-305. doi: 10.1016/j.compositesb.2018.08.122
    [23]
    TAGHIZADEH S A, FARROKHABADI A, LIAGHAT G, et al. Characterization of compressive behavior of PVC foam infilled composite sandwich panels with different corrugated core shapes[J]. Thin-Walled Structures,2019,135:160-172. doi: 10.1016/j.tws.2018.11.019
    [24]
    LIU Y, ZHOU C, CEN B, et al. Compression property of a novel lattice sandwich structure[J]. Composites Part B: Engineering,2017,117:130-137. doi: 10.1016/j.compositesb.2017.02.036
    [25]
    中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flatwise compression of sandwich constructions or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [26]
    WANG L, LIU W, FANG H, et al. Behavior of sandwich wall panels with GFRP face sheets and a foam-GFRP web core loaded under four-point bending[J]. Journal of Compo-site Materials,2014,49(22):2765-2778.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1201) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return