Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003
Citation: ZHOU Hongyuan, YU Hongxin, WANG Xiaojuan, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 695-706. doi: 10.13801/j.cnki.fhclxb.20210420.003

Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles

doi: 10.13801/j.cnki.fhclxb.20210420.003
  • Received Date: 2021-03-03
  • Accepted Date: 2021-04-16
  • Rev Recd Date: 2021-04-06
  • Available Online: 2021-04-21
  • Publish Date: 2022-02-01
  • In order to explore a new way of recycle use of building solid waste, a composite structure with building waste particles constrained by basalt fiber plain woven fabric was proposed. Its mechanical properties and energy absorption characteristics were investigated through quasi-static uniaxial compression test. The impacts of the type of building solid waste particles, the size grade of the building solid waste particles, and the number of constrained layers of basalt plain woven fabric on the response process, failure mode, load transfer, and energy absorption were discussed, respectively. The results show that the peak load of waste brick particles (16.54-27.89 kN) and waste concrete particles (17.99-32.33 kN) under the constraint of single-layer basalt fiber plain woven fabric decrease with increasing particle size. Compared with waste concrete particles, although the waste brick particles provide lower peak load at each particle size grade, the latter exhibits a stable plateau stage (the plateau stress range is 0.87-1.26 MPa) and obvious densification strain (about 0.3), which is an ideal energy-absorbing structure. Increasing the number of constrained layers of basalt plain woven fabric for waste brick particles is able to significantly increase the peak load and specific energy absorption, however, it is not an ideal energy absorption structure due to the lack of plateau stage and obvious densification strain.

     

  • loading
  • [1]
    叶胜兰. 我国建筑垃圾综合利用的现状及发展趋势[J]. 绿色科技, 2018(18):124-127.

    YE Shenglan. Analysis on the present situation and treatment of comprehensive utilization of construction waste[J]. Journal of Green Science and Technology,2018(18):124-127(in Chinese).
    [2]
    曹万林, 肖建庄, 叶涛萍, 等. 钢筋再生混凝土结构研究进展及其工程应用[J]. 建筑结构学报, 2020, 41(12):1-16, 27.

    CAO Wanlin, XIAO Jianzhuang, YE Taoping, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure[J]. Journal of Building Structures,2020,41(12):1-16, 27(in Chinese).
    [3]
    曹万林, 尹海鹏, 张建伟, 等. 再生混凝土框架结构抗震性能试验研究[J]. 北京工业大学学报, 2011, 37(2):191-198.

    CAO Wanlin, YIN Haipeng, ZHANG Jianwei, et al. Seismic behavior experiment of recycled concrete frame structures[J]. Journal of Beijing University of Technology,2011,37(2):191-198(in Chinese).
    [4]
    肖建庄, 兰阳. 再生混凝土单轴受拉性能试验研究[J]. 建筑材料学报, 2006(2):154-158. doi: 10.3969/j.issn.1007-9629.2006.02.005

    XIAO Jianzhuang, LAN Yang. Investigation on the tensile behavior of recycled aggregate concrete[J]. Journal of Building Materials,2006(2):154-158(in Chinese). doi: 10.3969/j.issn.1007-9629.2006.02.005
    [5]
    肖建庄, 周正久, 马修斯. 再生骨料混凝土板冲切性能试验[J]. 同济大学学报(自然科学版), 2015, 43(1):41-46, 53.

    XIAO Jianzhuang, ZHOU Zhengjiu, MA Xiusi. Test on punching behavior of recycled aggregate concrete slabs[J]. Journal of Tongji University (Natural Science),2015,43(1):41-46, 53(in Chinese).
    [6]
    梁炯丰, 何春锋, 王长诚, 等. 再生废砖粗骨料混凝土基本力学性能研究[J]. 混凝土, 2014(4):56-58. doi: 10.3969/j.issn.1002-3550.2014.04.017

    LIANG Jiongfeng, HE Chunfeng, WANG Changcheng, et al. Experimental research on the basic mechanical properties of recycled waste brick coarse aggregate concrete[J]. Concrete,2014(4):56-58(in Chinese). doi: 10.3969/j.issn.1002-3550.2014.04.017
    [7]
    孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7):1763-1773.

    KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1763-1773(in Chinese).
    [8]
    高丹盈, 景嘉骅, 周潇. 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35(12):3441-3449.

    GAO Danying, JING Jiahua, ZHOU Xiao. Reinforcing mechanism and calculation method of compressive behavior of hybrid fiber reinforced recycled brick aggregates concrete[J]. Acta Materiae Compositae Sinica,2018,35(12):3441-3449(in Chinese).
    [9]
    肖杰, 马海峰, 吴超凡, 等. 建筑固废弃物再生粒料基层混合料的性能研究[J]. 建筑材料学报, 2018, 21(3):511-515, 522. doi: 10.3969/j.issn.1007-9629.2018.03.026

    XIAO Jie, MA Haifeng, WU Chaofan, et al. Study on performance of construction and demolition waste recycled aggregate base mixture[J]. Journal of Building Materials,2018,21(3):511-515, 522(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.026
    [10]
    XUAN D X, MOLENAAR A, HOUBEN L J M. Evaluation of cement treatment of reclaimed construction and demolition waste as road bases[J]. Journal of Cleaner Production,2015,100:77-83. doi: 10.1016/j.jclepro.2015.03.033
    [11]
    POON C S, CHAN D X. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base[J]. Construction and Building Materials,2006,20(8):578-585. doi: 10.1016/j.conbuildmat.2005.01.045
    [12]
    ZHAO Z, LIU C S, BROGLIATO B. Energy dissipation and dispersion effects in granular media[J]. Physical Review E,2008,78(3):031307.
    [13]
    陆坤权, 刘寄星. 颗粒物质(上)[J]. 物理, 2004(9):629-635. doi: 10.3321/j.issn:0379-4148.2004.09.002

    LU Kunquan, LIU Jixing. Static and dynamic properties of granular matter (Ⅰ)[J]. Physics,2004(9):629-635(in Chinese). doi: 10.3321/j.issn:0379-4148.2004.09.002
    [14]
    孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008(8):4667-4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica,2008(8):4667-4674(in Chinese). doi: 10.3321/j.issn:1000-3290.2008.08.007
    [15]
    陈俊生, 莫海鸿, 刘叔灼, 等. 土工模袋砂单轴抗压强度试验研究[J]. 岩石力学与工程学报, 2014, 33(S1):2930-2935.

    CHEN Junsheng, MO Haihong, LIU Shuzhuo, et al. Experimental study of uniaxial compressive srength on geomembrane bag with sand[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):2930-2935(in Chinese).
    [16]
    MATSUOKA H, LIU S. New earth reinforcement method by soilbag[J]. Soils and Foundations,2003,43(6):173-188.
    [17]
    魏晨, 郭荣辉. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2019, 36(3):89-94. doi: 10.3969/j.issn.2096-5184.2019.03.018

    WEI Chen, GUO Ronghui. Properties and application of basalt fiber[J]. Journal of Textile Science and Engineering,2019,36(3):89-94(in Chinese). doi: 10.3969/j.issn.2096-5184.2019.03.018
    [18]
    欧阳利军, 许峰, 高皖扬, 等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验[J]. 复合材料学报, 2019, 36(2):469-481.

    OUYANG Lijun, XU Feng, GAO Wanyang, et al. Axial compressive behavior of post-heated square concrete columns wrapped by BFRP sheets: An experimental investigation[J]. Acta Materiae Compositae Sinica,2019,36(2):469-481(in Chinese).
    [19]
    王庆轩, 丁一宁. 玄武岩纤维网格布增强混凝土板双向弯曲性能试验[J]. 复合材料学报, 2020, 37(5):1200-1210.

    WANG Qingxuan, DING Yining. Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab[J]. Acta Materiae Compositae Sinica,2020,37(5):1200-1210(in Chinese).
    [20]
    中国国家标准化管理委员会. 建筑用砂: GB/T 14684—2011[S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. Sand for construction: GB/T 14684—2011[S]. Beijing: China Standards Press, 2011(in Chinese).
    [21]
    SPERL M. Experiments on corn pressure in silo cells-translation and comment of Janssen’s paper from 1895[J]. Granular Matter, 2006, 8(2): 59–65.
    [22]
    中华人民共和国住房与城乡建设部, 粮食钢板筒仓设计标准: GB 50322—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of grain steel silos: GB 50322—2011[S]. Beijing: China Standards Press, 2011(in Chinese).
    [23]
    李智峰, 彭政, 蒋亦民. 粮仓内颗粒压力的测量: Janssen行为及其偏差[J]. 物理学报, 2014, 63(10):296-303.

    LI Zhifeng, PENG Zheng, JIANG Yimin. Measurements of granular pressure in silo: Janssen behaviour and deviation[J]. Acta Physica Sinica,2014,63(10):296-303(in Chinese).
    [24]
    宗谨, 周志刚, 王文广, 等. 颗粒固体应力转向比的光弹法探测[J]. 物理学报, 2017, 66(10):177-184.

    ZONG Jin, ZHOU Zhigang, WANG Wenguang, et al. Janssen ratio in granular solid measured by photoelastic method[J]. Acta Physica Sinica,2017,66(10):177-184(in Chinese).
    [25]
    TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam[J]. Materials Science and Technology,2002,18(5):480-488. doi: 10.1179/026708302225002092
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views (883) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return