Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002
Citation: DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179. doi: 10.13801/j.cnki.fhclxb.20210414.002

Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance

doi: 10.13801/j.cnki.fhclxb.20210414.002
  • Received Date: 2021-03-15
  • Accepted Date: 2021-04-06
  • Rev Recd Date: 2021-04-04
  • Available Online: 2021-04-14
  • Publish Date: 2021-03-01
  • In order to improve the photocatalytic performance of TiO2 under visible light, a highly ordered β-FeOOH/TiO2 composite film material was prepared on FTO conductive glass through a secondary hydrothermal reaction, using scanning electron microscopy (SEM) and X-ray diffraction (XRD), Raman (Raman) and infrared spectroscopy (FTIR) analyzed its surface morphology, crystal structure and phase composition. UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) was used to test its light absorption performance. Finally, using methyl orange (MO) as a simulated pollutant, the photocatalytic activity of the composite film material under visible light was investigated. The results show that: TiO2 and β-FeOOH are connected by Fe—O—Ti bond, and the β-FeOOH/TiO2 composite film material successfully prepared has good structural stability. The β-FeOOH/TiO2 composite film material, due to its structural heterojunction and suitable energy band structure, effectively improves the migration efficiency of photogenerated carriers, and successfully expands its photoresponse range to about 540 nm. The composite film material exhibits excellent photocatalytic performance under visible light. The photocatalytic efficiency of β-FeOOH/TiO2 is 60.6% higher than that of the unmodified TiO2 sample. After six photocatalytic degradation cycles, the composite film is still in good condition. The continuity of the photocatalytic degradation of MO is still maintained at about 94%.

     

  • loading
  • [1]
    邹志刚, 赵进才, 付贤智, 等. 光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势[J]. 功能材料, 2005, 9(6):15-20.

    ZOU Z G, ZHAO J C, FU X Z, et al. Research status and development trend of photocatalytic materials in solar ener-gy conversion and environmental purification[J]. Jour-nal of Functional Materials,2005,9(6):15-20(in Chinese).
    [2]
    卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3):712-721.

    WEI S Y, MA J Z, FAN Q Q. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica,2021,38(3):712-721(in Chinese).
    [3]
    董晓珠, 曾雄丰, 张文丽, 等. 羟基氧化铁光催化材料的研究进展[J]. 中国陶瓷, 2020, 56(10):8-12.

    DONG X Z, ZENG X F, ZHANG W L, et al. Research progress of iron oxyhydroxide photocatalytic materials[J]. China Ceramics,2020,56(10):8-12(in Chinese).
    [4]
    LI K, YANG X, ZHANG L, et al. β-FeOOH/Fe-TiO2 heterojunctions on Ti for bacteria inactivation under light irradia-tion and biosealing[J]. Biomaterials Science,2020(5):1571-1576.
    [5]
    ZHU T, LI O W, ZHU L L, et al. TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor[J]. Scientific reports,2015,5:10601. doi: 10.1038/srep10601
    [6]
    SHONEYE Y, TANG J W. Highly dispersed FeOOH to enhance photocatalytic activity of TiO2 for complete mineralisation of herbicides[J]. Applied Surface Science,2020,511:145479. doi: 10.1016/j.apsusc.2020.145479
    [7]
    FU W, LU D L, YAO H, et al. Simultaneous roxarsone photocatalytic degradation and arsenic adsorption removal by TiO2/FeOOH hybrid[J]. Environmental Science and Pollution Research,2020,27(15):18434-18442.
    [8]
    LEE D, KVIT A, CHOI K S. Enabling solar water oxidation by BiVO4 photoanodes in basic media[J]. Chemistry of Materials,2018,30(14):4704-4712. doi: 10.1021/acs.chemmater.8b01405
    [9]
    SHER B R, ASHOK C, WAN I L, et al. Heterojunction of FeOOH and TiO2 for the formation of visible light photocatalyst[J]. Bulletin of the Korean Chemical Society,2009,30(11):2613-2616. doi: 10.5012/bkcs.2009.30.11.2613
    [10]
    YI H L, LI F L, FENG L Y. Destruction of tetracycline hydrochloride antibiotics by FeOOH/TiO2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system[J]. Journal of Membrane Science,2017,525:202-209. doi: 10.1016/j.memsci.2016.10.047
    [11]
    YIN X, LIU Q, YANG Y, et al. An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting[J]. International Journal of Hydrogen Energy,2019,44(1):594-604.
    [12]
    李跃军, 曹铁平, 孙大伟, 等. Bi@Bi4Ti3O12/TiO2等离子体复合纤维的制备及增强可见光催化性能[J]. 复合材料学报, 2020, 37(3):609-617.

    LI Y J, CAO T P, SUN D W, et al. Preparation and highly enhanced visible-light photocatalytic performances of Bi@Bi4Ti3O12/TiO2 plasmonic composite fibers[J]. Acta Materiae Compositae Sinica,2020,37(3):609-617(in Chinese).
    [13]
    LI Z H, FENG S, LIU S, et al. A three-dimensional interconnected hierarchical FeOOH/TiO2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation[J]. Nanoscale,2015,7(45):19178-19183. doi: 10.1039/C5NR06212H
    [14]
    YU Q, MENG X G, WANG T et al. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting[J]. Advanced Functional Materials,2015,25(18):2686-2692. doi: 10.1002/adfm.201500383
    [15]
    孙振亚. 负载纳米FeOOH/TiO2/Mmt制备与光催化降解甲基橙研究[D]. 武汉: 武汉理工大学, 2009.

    SUN Z Y. Study on FeOOH/TiO2/Mmt nanocomposite’s manufactyre and photocatalytic on Methyl Orange[D]. Wu Han: Wuhan University of Technology, 2009(in Chinese).
    [16]
    SU X H, HE Q Q, YANG Y E, et al. Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors[J]. Diamond & Related Materials,2021,114:108168.
    [17]
    GHOSH N G, SARKAR A, ZADE S S. The type-II n-n inorganic/organic nano-heterojunction of Ti3+ self-doped TiO2 nanorods and conjugated co-polymers for photoelectrochemical water splitting and photocatalytic dye degradation[J]. Chemical Engineering Journal,2021,407:127227. doi: 10.1016/j.cej.2020.127227
    [18]
    LIN S, REN H, WU Z, et al. Direct Z-scheme WO3-x nanowire-bridged TiO2 nanorod arrays for highly efficient photoelectrochemical overall water splitting[J]. Journal of Energy Chemistry,2021,59:721-729.
    [19]
    张子阳, 曾雄丰, 王建省, 等. TiO2纳米阵列/石墨烯复合薄膜材料的研究进展[J]. 中国陶瓷, 2020, 56(7):1-5.

    ZHANG Z Y, ZENG X F, WANG J S, et al. Research progress on TiO2 nanoarray/graphene composite film materials[J]. China Ceramics,2020,56(7):1-5(in Chinese).
    [20]
    WANG P, WANG J, WANG X, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Cataly-sis B: Environmental,2013,132:452-459.
    [21]
    ZHANG D B, HAN X Z, KONG X G, et al. The principle of introducing halogen ions into β-FeOOH: Controlling electronic structure and electrochemical performance[J]. Nano-Micro Letters,2020,12(1):107. doi: 10.1007/s40820-020-00440-2
    [22]
    XU Z H, ZHANG M, WU J Y, et al. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst.[J]. Water Science& Technology,2013,68(10):2178-2185.
    [23]
    ZHANG M, XU Z, LIANG J, et al. Potential application of novel TiO2/β-FeOOH composites for photocatalytic reduction of Cr(VI) with an analysis of statistical approach[J]. International Journal of Environmental Science & Technology,2015(12):1669-1676.
    [24]
    NTIRIBINYANGE M S. Degradation of textile wastewater using ultra-small β-Feooh/TiO2 heterojunction structure as a visible light photocatalyst[D]. Bellville: Cape Peninsula University of Technology, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1630) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return