Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
HUANG Lixin, YANG Shaozhao, LIANG Fuan, et al. Effects of interfacial layer properties on elastic properties of graphene/epoxy composites based on isoparametric graded element[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 577-589. doi: 10.13801/j.cnki.fhclxb.20210402.001
Citation: HUANG Lixin, YANG Shaozhao, LIANG Fuan, et al. Effects of interfacial layer properties on elastic properties of graphene/epoxy composites based on isoparametric graded element[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 577-589. doi: 10.13801/j.cnki.fhclxb.20210402.001

Effects of interfacial layer properties on elastic properties of graphene/epoxy composites based on isoparametric graded element

doi: 10.13801/j.cnki.fhclxb.20210402.001
  • Received Date: 2021-01-30
  • Accepted Date: 2021-03-29
  • Rev Recd Date: 2021-03-17
  • Available Online: 2021-04-02
  • Publish Date: 2022-02-01
  • The elastic properties of the composites with graphene sheets distributed continuously and discontinuously in the epoxy matrix were investigated via sandwich representative volume element (RVE) and embedded RVE, respectively. The RVEs were considered as a three phase composite structure, in which the interphase between graphene and epoxy resin matrix was treated as continuum medium while its material properties were considered to vary uniformly, linearly and exponentially. In the finite element modeling process of the RVE, the graphene was discretized using beam element and the epoxy matrix was discretized via the use of solid element while the interfacial layer was approached using isoparametric graded element (IGE). The finite element software ABAQUS was used to analyze the mechanical deformation behavior of the RVE subjected to small strains and extract its elastic properties. The extracted results of elastic properties were then used to study the effects of interfacial layer properties on the elastic properties of graphene/epoxy composites. The validity of the proposed computational method based on the IGE was verified by comparing with rule of mixture (ROM), the modified Halpin-Tsai model and the experimental data. Numerical examples illustrate that the IGE has the advantages of less computation, fast convergence and high accuracy in dealing with the uneven distribution of material properties in the interfacial layer. The prediction results of Young's modulus of composites reveal that when the material properties of interfacial layer adopt the gradient model, the calculated results of Young's modulus are larger than those of uniform distribution model, ROM and the modified Halpin-Tsai model, but closer to the experimental value. The results of this research show that the property of interfacial layer is an important factor affecting the mechanical properties of composites, and provide an effective way to seek more accurate analysis of the mechanical properties of composites.

     

  • loading
  • [1]
    JIANG J W, LENG J T, LI J X, et al. Twin graphene: A novel two-dimensional semiconducting carbon allotrope[J]. Carbon,2017,118:370-375. doi: 10.1016/j.carbon.2017.03.067
    [2]
    高锋, 白刚, 肖伟, 等. 石墨烯微片/氰酸酯多功能树脂基体研究[J]. 玻璃钢/复合材料, 2019(5):83-88.

    GAO Feng, BAI Gang, XIAO Wei, et al. Study on multifunctional GNPs/cyanate ester resin matrix[J]. Fiber Reinforced Plastics/Composties,2019(5):83-88(in Chinese).
    [3]
    LIAO K, LI S. Interfacial characteristics of a carbon nanotube-polystyrene composite system[J]. Applied Physics Letters,2001,79(25):4225-4227. doi: 10.1063/1.1428116
    [4]
    GOU J H, LIANG Z Y, ZHANG C, et al. Computational analysis of effect of singlewalled carbon nanotube rope on molecular interaction and load transfer of nanocomposites[J]. Composites Part B: Engineering,2005,36(6-7):524-533. doi: 10.1016/j.compositesb.2005.02.004
    [5]
    SHOKRIEH M M, RAFIEE R. On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region[J]. Composite Structures,2010,92(3):647-652. doi: 10.1016/j.compstruct.2009.09.033
    [6]
    GIANNOPOULOS G I, GEORGANTZINOS S K, KATSAREAS D E, et al. Numerical prediction of Young’s and shear moduli of carbon nanotube composites incorporating nanoscale and interfacial effects[J]. Computer Modeling in Engineering and Sciences,2010,56(3):231-248.
    [7]
    ZHAO Z, TENG K, LI N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced compo-sites flavored by carbon nanotube in matrix/interface[J]. Composite Structures,2017,159:761-772. doi: 10.1016/j.compstruct.2016.10.022
    [8]
    SUI X, SHI J, YAO H, et al. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer[J]. Composites Part A: Applied Science and Manufacturing,2017,92:134-144. doi: 10.1016/j.compositesa.2016.11.004
    [9]
    张策, 徐志伟, 郭兴峰. 基于微波等离子体方法生长的纳米碳对碳纤维/环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2018, 35(11):2994-3000.

    ZHANG Ce, XU Zhiwei, GUO Xingfeng. Effect of nanocarbon on interfacial properties of carbon fiber/exoxy composites based on microwave plasma enhanced chemical vapor deposition[J]. Acta Materiae Compositae Sinica,2018,35(11):2994-3000(in Chinese).
    [10]
    NI Y, CHEN L, TENG K Y, et al. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton[J]. American Chemical Society Applied Materials and Interfaces,2015,7(21):11583-11591. doi: 10.1021/acsami.5b02552
    [11]
    黄立新, 姚祺, 张晓磊, 等. 基于分层法的功能梯度材料有限元分析[J]. 玻璃钢/复合材料, 2013(2):43-48.

    HUANG Lixin, YAO Qi, ZHANG Xiaolei, et al. Finite element analysis of functionally graded materials based on layering method[J]. Fiber Reinforced Plastics/Composties,2013(2):43-48(in Chinese).
    [12]
    GIANNOPOULOS G I, GEORGANTZINOS S K, KATSAREAS D E, et al. Numerical prediction of Young’s and shear moduli of carbon nanotube composites incorporating nanoscale and interfacial effects[J]. Computer Modeling in Engineering and Sciences,2009,1465(1):1-17.
    [13]
    GIANNOPOULOS G I, GEORGANTZINOS S K, ANIFANTIS N K. A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nano-tube reinforced composites[J]. Composites Part B: Engineering,2010,41(8):594-601. doi: 10.1016/j.compositesb.2010.09.023
    [14]
    GIANNOPOULOS G I, KALLIVOKAS I G. Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase[J]. Finite Elements in Analysis and Design,2014,90:31-40. doi: 10.1016/j.finel.2014.06.008
    [15]
    SPANOS K N, GEORGANTZINOS S K, ANIFANTIS N K. Mechanical properties of graphene nanocomposites: A multiscale finite element prediction[J]. Composite Structures,2015,132:536-544. doi: 10.1016/j.compstruct.2015.05.078
    [16]
    SPANOS K N, ANIFANTIS N K. Finite element prediction of stress transfer in graphene nanocomposites: The interface effect[J]. Composite Structures,2016,154:269-276. doi: 10.1016/j.compstruct.2016.07.058
    [17]
    GUO Z X, SONG L B, BOAY C G, et al. A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites[J]. Composite Structures,2018,199:1-9.
    [18]
    KIM J H, PAULINO G H. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials[J]. International Journal for Numerical Methods in Engineering,2002,53(8):1903-1935. doi: 10.1002/nme.364
    [19]
    陈康, 许希武. 梯度复合材料热传导分析的梯度单元法[J]. 复合材料学报, 2012, 29(4):178-185.

    CHEN Kang, XU Xiwu. Graded element method for the heat conduction analysis of gradient composites[J]. Acta Materiae Compositae Sinica,2012,29(4):178-185(in Chinese).
    [20]
    ARROYO M, BELYTSCHKO T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule[J]. Physical Review B,2004,69(11):115415.1-115415.11.
    [21]
    SAKHAEE-POUR A. Elastic properties of single-layered graphene sheet[J]. Solid State Communications,2009,149(1-2):91-95. doi: 10.1016/j.ssc.2008.09.050
    [22]
    HUANG J, WU Y, HUANG L X. Evaluation of the mechanical properties of graphene-based nanocomposites incorporating a graded interphase based on isoparametric graded finite element model[J]. Composite Interfaces, 2020(28): 1-33.
    [23]
    沈观林, 胡更开, 刘彬. 复合材料力学(第2版)[M]. 北京: 清华大学出版社, 2013: 47-52.

    SHEN Guanlin, HU Gengkai, LIU Bin. Mechanics of composite materials (Second edition)[M]. Beijing: Tsinghua University Press, 2013: 47-52(in Chinese).
    [24]
    ZHAO X, ZHANG Q H, CHEN D J, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules,2010,43(5):2357-2363. doi: 10.1021/ma902862u
    [25]
    RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. American Chemical Society Nano,2009,3(12):3884-3890.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article views (783) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return