Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
QIU Xueqiong, CHEN Lin, LI Yonghang. Biaxial loading verification for an in-plane failure criterion of laminates with barely visible impact damages (BVID)[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 845-853. doi: 10.13801/j.cnki.fhclxb.20210331.002
Citation: QIU Xueqiong, CHEN Lin, LI Yonghang. Biaxial loading verification for an in-plane failure criterion of laminates with barely visible impact damages (BVID)[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 845-853. doi: 10.13801/j.cnki.fhclxb.20210331.002

Biaxial loading verification for an in-plane failure criterion of laminates with barely visible impact damages (BVID)

doi: 10.13801/j.cnki.fhclxb.20210331.002
  • Received Date: 2021-03-03
  • Accepted Date: 2021-03-26
  • Rev Recd Date: 2021-03-23
  • Available Online: 2021-04-01
  • Publish Date: 2022-02-01
  • In engineering practice, strains are used for stress analysis of composite aircraft structures, instead of stresses due to their stacking sequence dependence. Besides, for composite airplane, damage tolerant design is necessary, the compliance of airworthiness for composite structures with damages, especially barely visible impact damages (BVID) should be assessed. Thus for civil aircraft structural design, a credible strain based failure criterion for composites that containing damage is in demand for stress prediction. In this paper, a combined strain failure criterion for laminates was introduced. In order to verify the conservation of this failure criterion, biaxial loading tests were designed. Quasi-isotropic T800 carbon fiber reinforced epoxy resin matrix composite laminates with BVID were used for in-plane failure tests under various load conditions. Various load conditions with different combination of tension, compression and shearing loads were obtained through diversified design of load ratios. It is shown from the comparison of theoretical results and test results that all the theoretical failure loads are lower than experimental ones with a ratio of about 80%. The criterion is conserved to assure the safety of structures, but not too conserved to bring unnecessary weight to structures, thus it is suitable for engineering exercise.

     

  • loading
  • [1]
    TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials,1971,5(1):58-80. doi: 10.1177/002199837100500106
    [2]
    TSAI S W. Strength characteristics of composite materials[R]. Washington: NASA CR-224, 1965.
    [3]
    HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials,1967,1(2):200-206. doi: 10.1177/002199836700100210
    [4]
    HASHIN Z. Failure criteria for unidirectional fiber compo-sites[J]. Journal of Applied Mechanics,1980,47(6):329-334.
    [5]
    PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology,2002,62(12-13):1633-1662. doi: 10.1016/S0266-3538(01)00208-1
    [6]
    SUN C T, QUINN B J, TAO J, et al. Comparative evaluation of failure analysis methods for composite laminates[R]: Washington NASA, DOT/FAA/AR-95/109, 1996.
    [7]
    HART-SMITH L J. Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates[J]. Composites Science and Technology,1998,58(7):1151-1178. doi: 10.1016/S0266-3538(97)00192-9
    [8]
    ROTEM A. Prediction of laminate failure with the Rotem failure criterion[J]. Composites Science and Technology,1998,58(7):1083-1094. doi: 10.1016/S0266-3538(96)00143-1
    [9]
    HINTON M J, SODEN P D. Prediction failure in composite laminates: The background to the exercise[J]. Composites Science and Technology,1998,58(7):1001-1010. doi: 10.1016/S0266-3538(98)00074-8
    [10]
    SCHULTE K. World wide failure excercise on failure prediction in composites[J]. Composites Science and Technology,2002,62(12-13):1479. doi: 10.1016/S0266-3538(02)00126-4
    [11]
    SODEN P D, HINTON M J, KADDOUR A S. Lamina properties and layup configurations and loading conditions of range fibre reinforced composite laminates[J]. Compo-sites Science and Technology,1998,58(7):1011-1022. doi: 10.1016/S0266-3538(98)00078-5
    [12]
    HINTONA M J, KADDOURB A S, SODEN P D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence[J]. Composites Science and Technology,2002,62(12-13):1725-1797. doi: 10.1016/S0266-3538(02)00125-2
    [13]
    HINTON M, KADDOUR A. The background to part B of the second world-wide failure exercise: Evaluation of theories for predicting failure in polymer composite laminates under three-dimensional states of stress[J]. Journal of Composite Materials,2013,47(6-7):643-652. doi: 10.1177/0021998312473346
    [14]
    KADDOUR A S, HINTON M J, SMITH P A, et al. The background to the third world-wide failure exercise[J]. Journal of Composite Materials,2013,47(20-21):2417-2426.
    [15]
    KUMAZAWA H, TAKATOYA T. Biaxial strength investigation of CFRP composite laminates by using cruciform specimens[C]. Edinburgh, United Kingdom: 17th international Conference on Composite Materials (ICCM-17), 2009.
    [16]
    WELSH J S, ADAMS D F. An experimental investigation of the biaxial strength of IM6/3501-6 carbon/epoxy cross-ply laminates using cruciform specimens[J]. Composites Part A: Applied Science & Manufacturing,2002,33(6):829-839.
    [17]
    XU J, ASKARI A, WECKNER O, et al. Damage and failure analysis of composite laminates under biaxial loads[C]. Waikiki: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2007.
    [18]
    王犇. 复合材料的双轴试验研究[J]. 科技创新导报, 2018(11):19-21.

    WANG Ben. Biaxial loading tests study for composites[J]. Science and Technology Innovation Herald,2018(11):19-21(in Chinese).
    [19]
    史晓辉, 李真, 陈秀华, 等. 复合材料双向加载试验件形状优化设计[J]. 试验室研究与探索, 2012, 31(6):51-55.

    SHI Xiaohui, LI Zhen, CHEN Xiuhua, et al. Shape optimization of a composite cruciform specimen under biaxial loading condition[J]. Research and Exploration in Laboratory,2012,31(6):51-55(in Chinese).
    [20]
    李真, 史晓辉, 陈秀华, 等. 基于改进蚁群算法的复合材料双向加载十字形试件优化设计[J]. 机械科学与技术, 2013, 32(3):462-468.

    LI Zhen, SHI Xiaohui, CHEN Xiuhua, et al. Optimization of a biaxial loading for cruciform specimen of composite based on modified ACO[J]. Mechanical Science and Technology for Aerospace Engineering,2013,32(3):462-468(in Chinese).
    [21]
    蔡登安, 周光明, 曹然, 等. 双轴载荷下复合材料十字型试样几何形状对中心测试区系数的影响[J]. 复合材料学报, 2015, 32(4):1138-1144.

    CAI D A, ZHOU G M, CAO R, et al. Influence of geometry of composite cruciform specimen under loading on coeddicients of central testing zone[J]. Acta Materiae Compositae Sinica,2015,32(4):1138-1144(in Chinese).
    [22]
    ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D 7136[S]. West Conhohoken: ASTM International, 2015.
    [23]
    ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D 3039[S]. West Conhohoken: ASTM International, 2014.
    [24]
    ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D 7137[S]. West Conhohoken: ASTM International, 2012.
    [25]
    ASTM International. Standard test method for shear properties of composite materials by v-notched rail shear method: ASTM D 7078[S]. West Conhohoken: ASTM International, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (1049) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return