WANG Shenwan, ZHONG Shuang, ZHENG Lili, et al. Preparation of calcite/biochar composite by co-pyrolysis and its adsorption properties and mechanism for Pb(II)[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4282-4293. DOI: 10.13801/j.cnki.fhclxb.20210309.002
Citation: WANG Shenwan, ZHONG Shuang, ZHENG Lili, et al. Preparation of calcite/biochar composite by co-pyrolysis and its adsorption properties and mechanism for Pb(II)[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4282-4293. DOI: 10.13801/j.cnki.fhclxb.20210309.002

Preparation of calcite/biochar composite by co-pyrolysis and its adsorption properties and mechanism for Pb(II)

More Information
  • Received Date: December 13, 2020
  • Accepted Date: February 24, 2021
  • Available Online: March 09, 2021
  • In order to obtain a biochar material which adsorbs PB (II) in wastewater efficiently, calcite/biochar (CAL/BC) composite was prepared by co-pyrolysis at 500℃, 600℃ and 700℃, using coconut shell (CS) and calcite (CAL) as raw materials. The surface morphology and structure of CAL/BC composites were characterized by SEM, ICP-MS, BET, XRD and FTIR. The results show that CAL and CS combine tightly under the three pyrolysis tempera-tures, and CAL/BC has a large specific surface area and a large number of functional groups. The maximum adsorption capacities of PB (II) on CAL/BC composite (CAL∶ CS=1∶ 2, mass ratio) prepared at 500℃, 600℃, and 700℃ are 95.24 mg·g−1, 99.01 mg·g−1, and 185.19 mg·g−1. The optimum adsorption condition is pH=5.5 and the amount of adsorbent is 1.5 g·L−1. The adsorption process conforms to the second-order kinetic model and Langmuir isotherm model. The mechanisms of adsorption of Pb(II) on CAL/BC composites are precipitation, ion exchange, cation-π action, pore filling and electrostatic gravitation. In addition, the removal rate of Pb(II) by CAL/BC composite remains high level after 4 adsorption-desorption cycles. Therefore, the CAL/BC composite prepared by co-pyrolysis has a excellent application prospect in the treatment of Pb(II) in wastewater.
  • [1]
    BOGUSZ A, OLESZCZUK P, DOBROWOLSKI R. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water[J]. Bioresource Technology,2015,196:540-549. DOI: 10.1016/j.biortech.2015.08.006
    [2]
    LU X W, NING X A, LEE P H, et al. Transformation of hazardous lead into lead ferrite ceramics: Crystal structures and their role in lead leaching[J]. Journal of Hazardous Materials,2017,336(15):139-145.
    [3]
    CUONG D V, LIU N L, NGUYEN V A, et al. Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal[J]. Science of the Total Environment,2019,692:844-853. DOI: 10.1016/j.scitotenv.2019.07.125
    [4]
    GUPTA V K, AGARWAL S, SALEH T A. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal[J]. Journal of Hazardous Materials,2011,185(1):17-23. DOI: 10.1016/j.jhazmat.2010.08.053
    [5]
    BAI J, CHAO Y Q, CHEN Y M, et al. The effect of interaction between Bacillus subtilis DBM and soil minerals on Cu(II) and Pb(II) adsorption.[J]. Journal of Environmental Sciences (China),2019,78:328-337. DOI: 10.1016/j.jes.2018.11.012
    [6]
    RWIZA M J, OH S, KIM K, et al. Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania[J]. Chemosphere,2018,195:135-145. DOI: 10.1016/j.chemosphere.2017.12.043
    [7]
    AWUAL M R, ISLAM A, HASAN M M, et al. Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater[J]. Journal of Cleaner Production,2019,224:920-929. DOI: 10.1016/j.jclepro.2019.03.241
    [8]
    BOUABIDI Z B, EL-NAAS M H, CORTES D, et al. Steel-Making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution[J]. Chemical Engineering Journal,2018,334:837-844. DOI: 10.1016/j.cej.2017.10.073
    [9]
    KAZEMI M, JAHANSHAHI M, PEYRAVI M. Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate[J]. Journal of Hazardous Materials,2018,344:12-22. DOI: 10.1016/j.jhazmat.2017.09.059
    [10]
    ROQUE F, DIAZ K, ANCCO M, et al. Biodepuration of domestic sewage, textile effluents and acid mine drainage using starch-based xerogel from recycled potato peels[J]. Water Science and Technology,2018,77(5):1250-1261. DOI: 10.2166/wst.2018.008
    [11]
    SONG M, WEI Y X, CAI S P, et al. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents[J]. Science of The Total Environment,2018,618:1416-1422. DOI: 10.1016/j.scitotenv.2017.09.268
    [12]
    HU B W, GUO X J, ZHENG C, et al. Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques[J]. Chemical Engineering Journal,2019,357:66-74. DOI: 10.1016/j.cej.2018.09.140
    [13]
    QIU M Q, WANG M, ZHAO Q Z, et al. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate[J]. Chemosphere,2018,201:764-771. DOI: 10.1016/j.chemosphere.2018.03.057
    [14]
    GAO L Y, DENG J H, HUANG G F, et al. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge[J]. Bioresource Technology,2019,272:114-122. DOI: 10.1016/j.biortech.2018.09.138
    [15]
    JIANG Y H, LI A Y, DENG H, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks[J]. Bioresource Technology,2019,276:183-189. DOI: 10.1016/j.biortech.2018.12.079
    [16]
    WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production,2019,227:1002-1022. DOI: 10.1016/j.jclepro.2019.04.282
    [17]
    ABDELHAFEZ A A, LI J H. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel[J]. Journal of the Taiwan Institute of Chemical Engineers,2016,61:367-375. DOI: 10.1016/j.jtice.2016.01.005
    [18]
    WANG H Y, GAO B, WANG S S, et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology,2015,197:356-362. DOI: 10.1016/j.biortech.2015.08.132
    [19]
    ZHANG J J, SHAO J G, JIN Q Z, et al. Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar[J]. Science of the Total Environment,2020,716:137016. DOI: 10.1016/j.scitotenv.2020.137016
    [20]
    卢琨, 侯媛媛. 海南省椰子产业分析与发展路径研究[J]. 广东农业科学, 2020, 47(6):145-151.

    LU K, HOU Y Y. Analysis and development path of coconut industry in Hainan province[J]. Guangdong Agricultural Sciences,2020,47(6):145-151(in Chinese).
    [21]
    ADENIYI A G, ONIFADE D V, IGHALO J O, et al. A review of coir fiber reinforced polymer composites[J]. Composites Part B: Engineering,2019,176:107305. DOI: 10.1016/j.compositesb.2019.107305
    [22]
    PRAJAPATI A K, MONDAL M K. Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell[J]. Chemosphere,2020,307:112949.
    [23]
    UMAR I A, ABDULRAHEEM G, BALA S, et al. Kinetics, equilibrium and thermodynamics studies of C. I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon[J]. International Biodeterioration & Biodegradation,2015,102:265-273.
    [24]
    ZHAO X Y, ZENG X L, QIN Y, et al. An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon[J]. Chemosphere,2018,206:285-292. DOI: 10.1016/j.chemosphere.2018.04.126
    [25]
    DASSHARMA D, SAMANTA S, KUMAR S D N, et al. A mechanistic insight into enrofloxacin sorptive affinity of chemically activated carbon engineered from green coconut shell[J]. Journal of Environmental Chemical Engineering,2020,8(5):104140. DOI: 10.1016/j.jece.2020.104140
    [26]
    JANG H M, KAN E. Engineered biochar from agricultural waste for removal of tetracycline in water[J]. Bioresource Technology,2019,284:437-447. DOI: 10.1016/j.biortech.2019.03.131
    [27]
    LYU H H, TANG J C, HUANG Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal,2017,322:516-524. DOI: 10.1016/j.cej.2017.04.058
    [28]
    MA H, LI J B, LIU W W, et al. Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal[J]. Bioresource Technology,2015,190:13-20. DOI: 10.1016/j.biortech.2015.04.048
    [29]
    LI X P, WANG C B, ZHANG J G, et al. Preparation and application of magnetic biochar in water treatment: A critical review[J]. Science of The Total Environment,2020,711:134847. DOI: 10.1016/j.scitotenv.2019.134847
    [30]
    ZHU R H, ZHU R L, GE F, et al. Effect of heating temperature on the sequestration of Cr3+ cations on montmorillonite[J]. Applied Clay Science,2016,121-122:111-118. DOI: 10.1016/j.clay.2015.11.027
    [31]
    YAO Y, GAO B, FANG J, et al. Characterization and environmental applications of clay-biochar composites[J]. Chemical Engineering Journal,2014,242:136-143. DOI: 10.1016/j.cej.2013.12.062
    [32]
    HEBERLING F, TRAINOR T P, LÜTZENKIRCHEN J, et al. Structure and reactivity of the calcite-water interface[J]. Journal of Colloid and Interface Science,2011,354(2):843-857. DOI: 10.1016/j.jcis.2010.10.047
    [33]
    SDIRI A., HIGASHI T, JAMOUSSI F, et al. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems[J]. Journal of Environmental Management,2012,93(1):245-253. DOI: 10.1016/j.jenvman.2011.08.002
    [34]
    MERRIKHPOUR H, JALALI M. Waste calcite sludge as an adsorbent for the removal of cadmium, copper, lead, and zinc from aqueous solutions[J]. Clean Technologies and Environmental Policy,2012,14(5):845-855. DOI: 10.1007/s10098-012-0450-0
    [35]
    SADJADI S, AKBARI M, LÉGER B, et al. Eggplant-derived biochar-halloysite nanocomposite as supports of pd nanoparticles for the catalytic hydrogenation of nitroarenes in the presence of cyclodextrin[J]. ACS Sustainable Chemistry & Engineering,2019,7:6720-6731.
    [36]
    KIM S A, KAMALA-KANNAN S, LEE K, et al. Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zerovalent iron composite[J]. Chemical Engineering Journal,2013,217:54-60. DOI: 10.1016/j.cej.2012.11.097
    [37]
    ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(II): Performance and mechanism[J]. Chemical Engineering Journal,2019,375:122011. DOI: 10.1016/j.cej.2019.122011
    [38]
    ZHOU X H, ZHOU J J, LIU Y C, et al. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water[J]. Fuel,2018,233:469-479. DOI: 10.1016/j.fuel.2018.06.075
    [39]
    BUDIMIROVIĆ D, VELIČKOVIĆ Z S, DJOKIĆ V R, et al. Efficient As(V) removal by α-FeOOH and α-FeOOH/α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes[J]. Chemical Engineering Research and Design,2017,119:75-86. DOI: 10.1016/j.cherd.2017.01.010
    [40]
    ZAHEER Z, BAWAZIR W A, AL-BUKHARI S M, et al. Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7[J]. Materials Chemistry and Physics,2019,232:109-120. DOI: 10.1016/j.matchemphys.2019.04.064
    [41]
    陈泽文, 周子晗, 吴美仪, 等. 埃洛石纳米管/聚间苯二胺复合材料去除Cr(Ⅵ)的性能[J]. 复合材料学报, 2020, 37(3):493-503.

    CHEN Z W, ZHOU Z H, WU M Y, et al. Adsorption properties of halloysite nanotubes/poly (m-phenylenediamine) composites for Cr(Ⅵ)[J]. Acta Materiae Compositae Sinica,2020,37(3):493-503(in Chinese).
    [42]
    ZHENG L C, YANG Y B, MENG P P, et al. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis[J]. Carbohydrate Polymers,2019,209:38-50. DOI: 10.1016/j.carbpol.2019.01.012
    [43]
    SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal,2014,242(242):36-42.
    [44]
    CAO Y Y, SHEN G H, ZHANG Y, et al. Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism[J]. Science of the Total Environment,2019,692:479-489. DOI: 10.1016/j.scitotenv.2019.07.102
    [45]
    FAN Y H, WANG H, DENG L Y, et al. Enhanced adsorption of Pb(II) by nitrogen and phosphorus Co-doped biochar derived from Camellia oleifera shells[J]. Environmental Research,2020,191:110030. DOI: 10.1016/j.envres.2020.110030
    [46]
    贾陆营, 连勇, 张津, 等. 羟基硅酸镁粉体表面改性及作为润滑油添加剂的摩擦学性能研究[J]. 表面技术, 2020, 49(4):213-221.

    JIA L Y, LIAN Y, ZHANG J, et al. Surface modification and tribological properties of magnesium silicate hydroxide powder as lubricant additive[J]. Surface Technology,2020,49(4):213-221(in Chinese).
    [47]
    LIU J, YANG X Y, LIU H H, et al. Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,601:124960. DOI: 10.1016/j.colsurfa.2020.124960
    [48]
    XU X B, HU X, DING Z H, et al. Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb(II) into value-added PbO nanoparticles[J]. Chemical Engineering Journal,2017,308:863-871. DOI: 10.1016/j.cej.2016.09.122
    [49]
    CAI D Q, WANG L H, ZHANG G L, et al. Controlling pesticide loss by natural porous micro/nano composites: Straw ash-based biochar and biosilica[J]. ACS Applied Materials & Interfaces,2013,5(18):9212-9216.
    [50]
    张晓涛, 王喜明. 木质纤维素/纳米蒙脱土复合材料对废水中Cu(II)的吸附及解吸[J]. 复合材料学报, 2015, 32(2):385-394.

    ZHANG X T, WANG X M. Adsorption and desorption of Cu(II) in wastewater by lignocellulose/nano-montmorillonite composites[J]. Acta Materiae Compositae Sinica,2015,32(2):385-394(in Chinese).
    [51]
    WU X P, GAO P, ZHANG X L, et al. Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite[J]. Applied Clay Science,2014,95:60-66. DOI: 10.1016/j.clay.2014.03.010
    [52]
    YAMADA S. Cation–π interactions in organic crystals[J]. Coordination Chemistry Reviews,2020,415:213301. DOI: 10.1016/j.ccr.2020.213301
    [53]
    MAZIARZ P, MATUSIK J, RADZISZEWSKA A. Halloysite-zero-valent iron nanocomposites for removal of Pb(II)/Cd(II) and As(V)/Cr(VI): Competitive effects, regeneration possibilities and mechanisms[J]. Journal of Environmental Chemical Engineering,2019,7(6):103507. DOI: 10.1016/j.jece.2019.103507
  • Related Articles

    [1]WANG Jihua, LIU Junwang, WANG Chunfeng, WANG Yongliang, HAN Zhidong. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. DOI: 10.13801/j.cnki.fhclxb.20200922.006
    [2]ZHANG Zijing, LIU Chang, LI Ruhui, WU Chonggang, GONG Xinghou, HU Tao. Preparation and dielectric properties of silanized multi-walled carbon nanotubes/silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1675-1683. DOI: 10.13801/j.cnki.fhclxb.20191113.004
    [3]ZHANG Mingyan, WANG Denghui, WU Zijian, YANG Zhenhua, LIU Ju. Dielectric properties of modified carbon nanotube/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1285-1294. DOI: 10.13801/j.cnki.fhclxb.20191105.001
    [4]YAN Shicheng, XUE Yahong, YANG Yulin, BAO Qianqian, WEI Liming, ZHAO Nan. Thermal insulation and dielectric properties of aluminium phosphate-polyethersulphone layered composites[J]. Acta Materiae Compositae Sinica, 2017, 34(9): 1919-1925. DOI: 10.13801/j.cnki.fhclxb.20161130.003
    [5]CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2419-2425. DOI: 10.13801/j.cnki.fhclxb.20160108.002
    [6]CHEN Dong, JU Jianguo, HAO Xufeng. Dielectric properties of quartz fiber reinforced KH308 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 563-568.
    [7]YAO Guoguang, LIU Peng. Microwave dielectric properties of Mg4Nb2O9/CaTiO3 composite ceramics[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 94-98.
    [8]SONG Xiugong, WANG Jihui, GAO Guoqiang. Temperature and dielectric property of resin during RTM process[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 18-21.
    [9]GAO Feng, YANG Zupei, LIU Xiangchun, TIAN Changsheng. PHASE STRUCTURE AND DIELECTRIC PROPERTIES OF FERROELECTRICS AND FERRITE MIXED COMPOSITES[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 22-27.
    [10]DONG Lijie, XIONG Chuanxi, CHEN Juan, LIU Qihong, WANG Yanbing, REN Zhongkui. DIELECTRIC PROPERTY OF BaTiO3/PVDF COMPOSITE PREPARED BY A MELT PROCESS[J]. Acta Materiae Compositae Sinica, 2003, 20(3): 122-126.
  • Cited by

    Periodical cited type(4)

    1. 于丹. 聚氯乙烯/碳纳米管复合材料的制备和性能研究. 塑料科技. 2024(01): 36-39 .
    2. 余澎,涂操,郭博森,王闻达,赵航,彭玉婷,罗卫华. 木质素基碳纳米管/炭复合材料的制备及电化学性能研究. 现代化工. 2023(02): 92-97 .
    3. 冀佳帅,杜佳琪,陈俊琳,张新民,刘伟,宋朝霞. Co-Fe普鲁士蓝/多壁碳纳米管复合材料的超电容性能. 材料科学与工艺. 2023(04): 1-8 .
    4. 张开砚. 电感耦合等离子体发射光谱法测定普鲁士蓝类正极材料中铁和钠. 化学分析计量. 2022(08): 26-30 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1383) PDF downloads (71) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return