Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004
Citation: ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2010-2024. doi: 10.13801/j.cnki.fhclxb.20210302.004

Research progress of MXene-based hydrogel composites

doi: 10.13801/j.cnki.fhclxb.20210302.004
  • Received Date: 2021-01-13
  • Accepted Date: 2021-02-23
  • Available Online: 2021-03-02
  • Publish Date: 2021-07-15
  • The MXenes is a new type of two-dimensional nanosheets. With the rapid development of MXene materials, a new material, namely MXene-based hydrogel composites, has emerged in recent years. It has broad application prospects in biomedical, energy storage, electromagnetic interference shielding, sensors and other aspects. However, the preparation and application of MXene-based hydrogel composites are still in their infancy. This article mainly reviews the latest progress of MXene-based hydrogel composites, combs the preparation progress of MXene-based hydrogel composites in detail, and highlights its potential application prospects. Finally, the opportunities and challenges on the challenges in the field of MXene-based hydrogel composites are prospected.

     

  • loading
  • [1]
    ELSHERBINY I M, ABDELHAMID M I, RASHAD M, et al. New calcareous soil-alginate composites for efficient uptake of Fe(Ⅲ), Mn(Ⅱ) and As(Ⅴ) from water[J]. Carbohydrate Polymers,2013,96(2):450-459. doi: 10.1016/j.carbpol.2013.04.021
    [2]
    金淑萍, 柳明珠, 陈世兰, 等. 智能聚合物和水凝胶的响应特性及其应用[J]. 物理化学学报, 2007, 23(3):438-446. doi: 10.3866/PKU.WHXB20070330

    JIN Shupin, LIU Mingzhu, CHEN Shilan, et al. Responsive properties and applications of the intelligent polymers and hydrogels[J]. Acta Physico-Chimica Sinica,2007,23(3):438-446(in Chinese). doi: 10.3866/PKU.WHXB20070330
    [3]
    HONG S, SYCKS D, CHAN H F, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures[J]. Advanced Materials,2015,27(27):4035-4040. doi: 10.1002/adma.201501099
    [4]
    HAO G P, HIPPAUF F, OSCHATZ M, et al. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors[J]. ACS Nano,2014,8(7):7138-7146. doi: 10.1021/nn502065u
    [5]
    HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small,2017,13(2):1601916. doi: 10.1002/smll.201601916
    [6]
    YANG X J, LIU X, LIU Z, et al. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles[J]. Advanced Materials,2012,24(21):2890-2895. doi: 10.1002/adma.201104797
    [7]
    FUSCO S, SAKAR M S, KENNEDY S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions[J]. Advanced Materials,2014,26(6):952-957. doi: 10.1002/adma.201304098
    [8]
    HUANG C C, BAI H, LI C, et al. A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents[J]. Chemical Communications,2011,47(17):4962-4964. doi: 10.1039/c1cc10412h
    [9]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th thanniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [10]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [11]
    LUKATSKAYA M, MASHTALIR O, REN C, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
    [12]
    SUN Z M. Progress in research and development on MAX phases: A family of layered ternary compounds[J]. International Materials Reviews,2013,56(3):143-166.
    [13]
    ANASORI B, LUKATSKAYA M, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2:16098. doi: 10.1038/natrevmats.2016.98
    [14]
    ZHANG W, MA J, ZHANG W J. A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes[J]. Nanoscale,2020,12(12):6637-6643. doi: 10.1039/D0NR01414A
    [15]
    QI Q, ZHANG H, ZHANG P, et al. Self-assembled sandwich hollow porous carbon sphere@MXene composites as superior Li-S battery cathode hosts[J]. 2D Materials,2020,7(2):025049.
    [16]
    HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials,2018,30(52):1804779. doi: 10.1002/adma.201804779
    [17]
    LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS Nano,2020,14(2):2109-2117. doi: 10.1021/acsnano.9b08832
    [18]
    ZHANG Y, LEE K H, ANJUM D H, et al. MXenes stretch hydrogel sensor performance to new limits[J]. Science Advances,2018,4(6):aat0098. doi: 10.1126/sciadv.aat0098
    [19]
    RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016,10(3):3674-3684. doi: 10.1021/acsnano.6b00181
    [20]
    CHENG L, CHEN Q, LI J, et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst[J]. Applied Catalysis B: Environmental,2020,267:118379. doi: 10.1016/j.apcatb.2019.118379
    [21]
    VENKATESHALU S, GRACE A. MXenes: A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond[J]. Applied Materials Today,2020,18:100509. doi: 10.1016/j.apmt.2019.100509
    [22]
    QIN L, YANG D, ZHANG M, et al. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage[J]. Journal of Colloid and Interface Science,2021,589:264-274. doi: 10.1016/j.jcis.2020.12.102
    [23]
    LI W, LI X, CHANG W, et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation[J]. Nano Research,2020,13:3048-3056. doi: 10.1007/s12274-020-2970-y
    [24]
    YU Z, WU P. Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation[J]. Advanced Materials Technologies,2020,5(6):2000065. doi: 10.1002/admt.202000065
    [25]
    KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination[J]. Advanced Energy Materials,2017,7(9):1601873. doi: 10.1002/aenm.201601873
    [26]
    WAN W, TAO M, CAO H, et al. Enhanced dielectric properties of homogeneous Ti3C2Tx MXene@SiO2/polyvinyl alcohol composite films[J]. Ceramics International,2020,46(9):13862-13868. doi: 10.1016/j.ceramint.2020.02.179
    [27]
    CAO W, CHEN F, ZHU Y, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [28]
    CHEN Y, XIE X, XIN X, et al. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis[J]. ACS Nano,2019,13(1):295-304. doi: 10.1021/acsnano.8b06136
    [29]
    SHANG T, LIN Z, QI C, et al. 3D macroscopic architectures from self-assembled MXene hydrogels[J]. Advanced Functional Materials,2019,29(33):1903960. doi: 10.1002/adfm.201903960
    [30]
    DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions[J]. Advanced Materials,2019,31(43):1902432. doi: 10.1002/adma.201902432
    [31]
    LIN Z, BARBARA D, TABERNA P, et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte[J]. Power Sources,2016,326:575-579. doi: 10.1016/j.jpowsour.2016.04.035
    [32]
    CHEN H, MA H, ZHANG P, et al. Pristine titanium carbide MXene hydrogel matrix[J]. ACS Nano,2020,14(8):10471-10479. doi: 10.1021/acsnano.0c04379
    [33]
    YANG C, JIANG Q, LI W, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation[J]. Chemistry of Materials,2019,31(22):9277-9287. doi: 10.1021/acs.chemmater.9b02115
    [34]
    WYCHOWANIEC J, LITOWCZENKO J, TADYSZAK K, et al. Unique cellular network formation guided by heterostructures based on reduced graphene oxide-Ti3C2Tx MXene hydrogels[J]. Acta Biomater,2020,115:104-115. doi: 10.1016/j.actbio.2020.08.010
    [35]
    WANG Q, PAN X, WANG X, et al. Spider web-inspired ultra-stable 3D Ti3C2Tx (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation[J]. Composites Part B: Engineering,2020,197:108187. doi: 10.1016/j.compositesb.2020.108187
    [36]
    ZHANG Y, CHEN K, LI Y, et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor[J]. ACS Applied Materials & Interfaces,2019,11(50):47350-47357.
    [37]
    LIAO H, GUO X, WAN P, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors[J]. Advanced Functional Materials,2019,29(39):1904507. doi: 10.1002/adfm.201904507
    [38]
    TAO N, ZHANG D, LI X, et al. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization[J]. Chemical Science,2019,10(46):10765-10771. doi: 10.1039/C9SC03917A
    [39]
    YEH C, RAIDONGIA K, SHAO J, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry,2015,7:166-170. doi: 10.1038/nchem.2145
    [40]
    MA Y, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor[J]. ACS Nano,2018,12(4):3209-3216. doi: 10.1021/acsnano.7b06909
    [41]
    LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479
    [42]
    GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-Polymer composites for various biomedical applications[J]. Ceramics International,2020,46(7):8522-8535. doi: 10.1016/j.ceramint.2019.12.257
    [43]
    GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516:78-81. doi: 10.1038/nature13970
    [44]
    LIN Z, SUN D, HUANG Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for Lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(27):14096-14100. doi: 10.1039/C5TA01855B
    [45]
    LUKATSKAYA M R, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy,2017,2:17105. doi: 10.1038/nenergy.2017.105
    [46]
    SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140. doi: 10.1126/science.aag2421
    [47]
    LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [48]
    MA Y, LIU N, LI L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communication,2017,8:1207. doi: 10.1038/s41467-017-01136-9
    [49]
    XU B, ZHU M, ZHANG W, et al. Field-effect transistors: Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity[J]. Advanced Materials,2016,28(17):3333-3339. doi: 10.1002/adma.201504657
    [50]
    YU M, ZHOU S, WANG Z, et al. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries[J]. Energy Storage Materials,2019,20:98-107. doi: 10.1016/j.ensm.2018.11.028
    [51]
    WU X, WANG Z, YU M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials,2017,29(24):1607017. doi: 10.1002/adma.201607017
    [52]
    NIU S, WANG Z, YU M, et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage[J]. ACS Nano,2018,12(4):3928-3937. doi: 10.1021/acsnano.8b01459
    [53]
    LUO J, WANG C, WANG H, et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes[J]. Advanced Functional Materials,2019,29(3):1805946. doi: 10.1002/adfm.201805946
    [54]
    ZHANG X, LV R, WANG A, et al. MXene aerogel scaffolds for high-rate lithium metal anodes[J]. Angewandte Chemie International Edition,2018,57(46):15028-15033. doi: 10.1002/anie.201808714
    [55]
    SONG J, GUO X, ZHANG J, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J
    [56]
    ZHAO S, ZHANG H, LUO J, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano,2018,12(11):11193-11202. doi: 10.1021/acsnano.8b05739
    [57]
    HAN M, YIN X, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials,2019,7(10):1900267.
    [58]
    WEI Y, XIANG L, OU H, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials,2020,30(48):2005135. doi: 10.1002/adfm.202005135
    [59]
    WANG L, ZHANG M, YANG B, et al. Highly compressible, thermally stable, light-weight and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano,2020,14(8):10633-10647. doi: 10.1021/acsnano.0c04888
    [60]
    MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced Healthcare Materials,2020,9(19):2000872. doi: 10.1002/adhm.202000872
    [61]
    LEE K H, ZHANG Y, JIANG Q, et al. Alshareef, ultrasound-driven two-dimensional Ti3C2Tx MXene hydrogel generator[J]. ACS Nano,2020,14(3):3199-3207. doi: 10.1021/acsnano.9b08462
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (2272) PDF downloads(325) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return