Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LI Liang, WANG Xianfeng, ZHAO Cong, et al. Influences of fiber angle on the vibration damping performance of variable angle laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001
Citation: LI Liang, WANG Xianfeng, ZHAO Cong, et al. Influences of fiber angle on the vibration damping performance of variable angle laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3693-3703. doi: 10.13801/j.cnki.fhclxb.20210301.001

Influences of fiber angle on the vibration damping performance of variable angle laminates

doi: 10.13801/j.cnki.fhclxb.20210301.001
  • Received Date: 2020-12-03
  • Accepted Date: 2021-02-16
  • Available Online: 2021-03-01
  • Publish Date: 2021-11-01
  • With the development of automated fiber placement technology, it is possible to lay complex curves which greatly increase the freedom of angle design. In this paper, with the purpose of improving the dynamic characteristics of composite laminates, the vibration damping performance of variable angle laminates was studied and analyzed. Firstly, the free attenuation experiment was carried out to study the relationship between the change of fiber angle and damping ratio of variable angle laminates. Then, the vibration response of variable angle laminates under random excitation was studied by random experiments. The transition function (TF) at the formant and the root mean square (RMS) of the acceleration at the pick-up point of vibration were used to evaluate the effect of vibration reduction. The results show that the damping ratio of laminates is the largest when the fiber angle is ±<45|60> and the least when the fiber angle is ±<73|88>. Based on the vibration reduction evaluation index of RMS, the vibration reduction performance of ±<45|60> sandwich laminate is 27.13% higher than the traditional linear laminate; Based on the formant vibration reduction evaluation index of TF, the vibration reduction effect of different formants is obviously different with the fiber change. The results show that the vibration reduction performance of the variable angle laminates is obviously better than that of the traditional linear laminates. The relevant experimental results will be helpful for the design and optimization of vibration reduction of variable angle laminates.

     

  • loading
  • [1]
    SABA N, JAWAID M, ALOTHMAN OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites[J]. Construction and Building Materials,2016(106):149-159.
    [2]
    肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008(1):50-53. doi: 10.3969/j.issn.1671-833X.2008.01.009

    XIAO Jun, LI Yong, LI Jianlong. Application of automatic fiber placement in manufacture of composite structures in large aircraft[J]. Aeronautical Manufacturing Technology,2008(1):50-53(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.01.009
    [3]
    AKHAVAN H, RIBEIRO P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers[J]. Composite Structures,2011,93(11):3040-3047. doi: 10.1016/j.compstruct.2011.04.027
    [4]
    尹先桃, 漆文凯. 变刚度复合材料层合板阻尼性能优化[C]. 中国航空学会第八届航空发动机可靠性学术交流, 2015: 459-463.

    YIN Xiantao, QI Wenkai. Research on damping properties optimization of variable-stiffness plate[C]. Journal of Physics Conference Series, 2015: 459-463 (in Chinese).
    [5]
    孔斌, 顾杰斐, 陈普会, 等. 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34(10):2121-2133.

    KONG Bin, GU Jiefei, CHEN Puhui, et al. Design, manufacture and analysis of variable stiffness composite structures[J]. Journal of Composite Materials,2017,34(10):2121-2133(in Chinese).
    [6]
    ABDALLA M, SETOODHE S, GRDAL Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters[J]. Computers & Strutures,2008,86(9):870-878.
    [7]
    聂国隽, 朱佳瑜. 纤维曲线铺放的复合材料层合板的自由振动分析[J]. 力学季刊, 2016, 37(2):274-283.

    NIE Guojun, ZHU Jiayu. Free vibration analysis of composite laminates with curvilinear fibers[J]. Chinese Quarterly of Mechanics,2016,37(2):274-283(in Chinese).
    [8]
    孙士平, 邓同强, 胡政. 丝束变角度层合板频率性能的参数化分析与优化[J]. 玻璃钢/复合材料, 2016, 8:27-32.

    SUN Shiping, DENG Tongqiang, HU Zheng. Par ametric analysis and optimization of frequency property of variable angle tow laminates[J]. Fiber Reinforced Plastics/Composites,2016,8:27-32(in Chinese).
    [9]
    欧阳小穗, 刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报, 2018, 39(3):221539.

    OUTANG X S, LIU Y. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3):221539(in Chinese).
    [10]
    TREVISO A, VAN GENECHTEN B, MUNDO D, et al. Damping in composite materials: Properties and models[J]. Composites Part B: Engineering,2015,78:144-152. doi: 10.1016/j.compositesb.2015.03.081
    [11]
    TANG X, YAN X. A review on the damping properties of fiber reinforced polymer composites[J]. Journal of Industrial Textiles,2020,49(6):693-721.
    [12]
    PEREIRA D A, GUIMARÃES T A M, RESENDE H B, et al. Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates[J]. Composite Structures,2020,244(4):112190.
    [13]
    PEREIRA D A, SALES T P, RADE D A. Multi-objective frequency and damping optimization of tow-steered composite laminates[J]. Composite Structures,2020,256:112932.
    [14]
    GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [15]
    GÜRDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing,2008,39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015
    [16]
    漆文凯, 程博. 复合材料层合板阻尼预测分析与验证[J]. 振动测试与诊断, 2013, 33(6):1049-1053.

    QI Wenkai, CHENG Bo. Predictive analysis and verification of damping for composite laminates[J]. Journal of Vibration, Measurement & Diagnosis,2013,33(6):1049-1053(in Chinese).
    [17]
    DHIKARI S, WOODHOUSE J. Identification of damping: Part1, Viscous damping[J]. Journal of Sound and Vibration,2001,243(1):43-61. doi: 10.1006/jsvi.2000.3391
    [18]
    李晖, 孙伟, 常永乐, 等. 具有振幅依赖性的纤维增强复合薄板非线性阻尼的时域测试方法[J]. 振动与冲击, 2018, 37(5): 169-174.

    LI Hui, SUN Wei, CHANG Yongle, et al. Time domain test method for nonlinear damping of a fiber-reinforced composite thin plate with amplitude dependence. Journal of Vibration and Shock [J], 2018, 37(5): 169-174. (in Chinese).
    [19]
    FALCÓ O, MAYUGO J A, LOPES C S, et al. Variable-stiffness composite panels: As-manufactured modeling and its influence on the failure behavior[J]. Composites Part B: Engineering,2014,56:660-669. doi: 10.1016/j.compositesb.2013.09.003
    [20]
    PEETERS D M J, LOZANO G G, ABDALLA M M. Effect of steering limit constraints on the performance of variable stiffness laminates[J]. Computers & Structures,2018,196:94-111.
    [21]
    REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis [M]. Boca Raton: CRC Press, 2004: 81-376.
    [22]
    刘建良, 梅志远, 唐宇航, 等. 几种典型复合材料板振动特性综合对比分析及设计规律研究[J]. 振动与冲击, 2019, 38(15):65-72.

    LIU Jianliang, MEI Zhiyuan, TANG Yuhang, et al. Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law[J]. Journal of Vibration and Shock,2019,38(15):65-72(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article views (777) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return