Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YAN Jianhui, KANG Rong, TANG Xing, et al. Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002
Citation: YAN Jianhui, KANG Rong, TANG Xing, et al. Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3747-3756. doi: 10.13801/j.cnki.fhclxb.20210129.002

Effect of ZrO2(Y2O3) content on mechanical properties of Mo-12Si-8.5B-ZrO2(Y2O3) composites with bimodal grain-size distribution

doi: 10.13801/j.cnki.fhclxb.20210129.002
  • Received Date: 2020-11-12
  • Accepted Date: 2021-01-16
  • Available Online: 2021-01-29
  • Publish Date: 2021-11-01
  • Multiphase Mo-12Si-8.5B alloy is a promising high-temperature structural material. In order to further simultaneously improve the strength and toughness of the Mo-12Si-8.5B alloy, the method of strengthening and toughening the bimodal grain size Mo-12Si-8.5B alloy with adding nano-ZrO2 (Y2O3) particles was put out. Nanometer Mo-ZrO2 (Y2O3) composite powders were successfully prepared by sol-gel and high-temperature hydrogen reduction method, and a series of Mo-12Si-8.5B-ZrO2 (Y2O3) composites with a bimodal grain size distribution were fabricated via spark plasma sintering (SPS) using nanometer Mo-ZrO2 (Y2O3) and micrometer Mo powders as raw materials. The results show that the particle size of Mo powders and the relative density of the sintered body decrease with the increase of the ZrO2 (Y2O3) content. When the ZrO2 (Y2O3) content is less than 2.5wt%, the relative density is above 98.1%. As the content of ZrO2 (Y2O3) are 1.5wt% and 2.5wt%, the composites exhibit the high hardness (9.76-9.98 GPa), flexural strength (672-678 MPa) and fracture toughness (12.68-12.82 MPa·m1/2). Grain refinement of the Mo, grain boundary strengthening of the nanometer/micrometer Mo grains and the second-phase strengthening of the nano-ZrO2(Y2O3) particles attribute to the increase of the hardness and flexural strength. The coarse grain Mo and nanometer ZrO2 (Y2O3) in the composites contribute to the improvement of the fracture toughness. The toughening mechanisms of the Mo-12Si-8.5B-ZrO2 (Y2O3) composites are crack deflection and crack bridging.

     

  • loading
  • [1]
    LIU L, SHI C, ZHANG C, et al. Microstructure, microhardness and oxidation behavior of Mo-Si-B alloys in the Moss+Mo2B+Mo5SiB2 three phase region[J]. Intermetallics,2020,116:106618. doi: 10.1016/j.intermet.2019.106618
    [2]
    LI R, LI B, CHEN X, et al. Variation of phase composition of Mo-Si-B alloys induced by boron and their mechanical properties and oxidation resistance[J]. Materials Science and Engineering: A,2019,749:196-209. doi: 10.1016/j.msea.2019.02.008
    [3]
    CHOE H, CHEN D, SCHNEIBEL J H, et al. Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo-12Si-8.5B (at. %) intermetallic[J]. Intermetallics,2001,9(4):319-329. doi: 10.1016/S0966-9795(01)00008-5
    [4]
    ZHANG G J, DANG Q, KOU H, et al. Microstructure and mechanical properties of lanthanum oxide-doped Mo-12Si-8.5B(at%) alloys[J]. Journal of Alloys and Compounds, 2013, 15: S493-S498.
    [5]
    KRÜGER M, FRANZ S, SAAGE H, et al. Mechanically alloyed Mo-Si-B alloys with a continuous α-Mo matrix and improved mechanical properties[J]. Intermetallics,2008,16(7):933-941. doi: 10.1016/j.intermet.2008.04.015
    [6]
    LI B, ZHANG G J, JIANG F, et al. Characterization of Mo-Si-B nanocomposite powders produced using mechanical alloying and powder heat treatment[J]. Journal of Materials Science& Technology,2015,31(10):995-1000.
    [7]
    LI B, ZHANG G J, JIANG F, et al. Preparation of fine-grained Mo-12Si-8.5B alloys with improved mechanical properties via a mechanical alloying process[J]. Journal of Alloys and Compounds,2014,609:80-85. doi: 10.1016/j.jallcom.2014.04.141
    [8]
    WANG J, REN S, LI R, et al. Microstructure and improved mechanical properties of ultrafine-grained Mo-12Si-8.5B (at. %) alloys with addition of ZrB2[J]. Progress in Natural Science: Materials International,2018,28(3):371-377. doi: 10.1016/j.pnsc.2018.04.004
    [9]
    MAJUMDAR S, KUMAR A, SCHLIEPHAKE D, et al. Microstructural and micro-mechanical properties of Mo-Si-B alloyed with Y and La[J]. Materials Science and Engineering: A,2013,573:257-263. doi: 10.1016/j.msea.2013.02.053
    [10]
    LI W H, ZHANG G J, WANG S X, et al. Ductility of Mo-12Si-8.5B alloys doped with lanthanum oxide by the liquid-liquid doping method[J]. Journal of Alloys and Compounds,2015,642:34-39. doi: 10.1016/j.jallcom.2015.04.047
    [11]
    LI R, LI B, WANG T, et al. Improved fracture toughness of a Mo-12Si-8.5B-3Zr alloy by grain coarsening and its multiple toughening mechanisms[J]. Journal of Alloys and Compounds,2018,743:716-727. doi: 10.1016/j.jallcom.2018.01.398
    [12]
    YAN J H, WANG Y, ZHOU P, et al. Microstructures and room temperature mechanical properties of Mo-12Si-8.5B-8Cr alloy[J]. Transactions of the Indian Institute of Metals,2018,71(1):245-251. doi: 10.1007/s12666-017-1173-z
    [13]
    ZHA M, ZHANG H M, YU Z Y, et al. Bimodal microstructure-A feasible strategy for high-strength and ductile metallic materials[J]. Journal of Materials Science & Technology,2018,34(2):257-264.
    [14]
    BUI Q H. Heterogeneous plastic deformation in bimodal bulk ultrafine-grained nickel[J]. Journal of Materials Science,2012,47(4):1902-1909. doi: 10.1007/s10853-011-5979-5
    [15]
    FAN G J, CHOO H, LIAW P K, et al. Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution[J]. Acta Materialia,2006,54(7):1759-1766. doi: 10.1016/j.actamat.2005.11.044
    [16]
    WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal[J]. Nature,2002,419(6910):912-915. doi: 10.1038/nature01133
    [17]
    LI R, LI B, CHEN X, et al. Enhanced fracture toughness and toughening mechanisms of fine-grained Mo-12Si-8.5B alloy with a bi-modally structured α-Mo grain[J]. Materials Science & Engineering:A,2020,772:138684.
    [18]
    CUI C P, ZHU X G, LIU S L, et al. Effect of nano-sized ZrO2 on high temperature performance of Mo-ZrO2 alloy[J]. Journal of Alloys and Compounds,2018,768:81-87. doi: 10.1016/j.jallcom.2018.07.214
    [19]
    康蓉, 颜建辉, 李茂键. 溶胶凝胶/高温氢还原法制备纳米Mo-ZrO2(Y2O3)复合粉末[J]. 稀有金属, 2021, 45(3): 288-296.

    KANG R, YAN J H, LI M J. Preparation of nanometer Mo-ZrO2(Y2O3) composite powder by sol-gel and high temperature hydrogen reduction[J]. Chinese Journal of Rare Metals, 2021, 45(3): 288-296(in Chinese).
    [20]
    LI Z, XU L J, WEI S H, et al. Fabrication and mechanical properties of tungsten alloys reinforced with c-ZrO2 particles[J]. Journal of Alloys and Compounds,2018,769:694-705. doi: 10.1016/j.jallcom.2018.07.342
    [21]
    GHADERI HAMIDI A, ARABI H, VAHDATI KHAKI J. Sintering of a nano-crystalline tungsten heavy alloy powder[J]. International Journal of Refractory Metals & Hard Materials,2019,80:204-209.
    [22]
    SCHNEIBEL J H, TORTORELLI P F, RITCHIE R O, et al. Optimization of Mo-Si-B intermetallics[J]. Metallurgical & Materials Transactions A,2005,36:525-531.
    [23]
    徐健建, 颜建辉, 汪异, 等. W对Mo-Si-B合金微观组织和力学性能的影响[J]. 材料热处理学报, 2015, 36(8):22-27.

    XU J J, YAN J H, WANG Y, et al. Effect of W addition on microstructure and mechanical properties of Mo-Si-B alloy[J]. Transactions of Materials and Heat Treatment,2015,36(8):22-27(in Chinese).
    [24]
    LI R, ZHANG G J, LI B, et al. The multi-scale microstructure and strengthening mechanisms of Mo-12Si-8.5BxZr (at. %) alloys[J]. International Journal of Refractory Metals and Hard Materials November. 2017, 68: 65-74.
    [25]
    WU X L, ZHU Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Materials Research Letters,2017,5(8):527-532. doi: 10.1080/21663831.2017.1343208
    [26]
    ASHBY M F, BLUNT F J, BANNISTER M K. Flow characteristics of highly constrained metal wires[J]. Acta Metallurgica,1989,37(7):1847-1857. doi: 10.1016/0001-6160(89)90069-2
    [27]
    LU G Y, LEDERICH R, SOBOYEJO W. Residual stresses and transformation toughening in MoSi2 composites reinforced with partially stabilized zirconia[J]. Materials Science and Engineering: A,1996,210(1-2):25-41. doi: 10.1016/0921-5093(95)10075-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1188) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return