Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHOU Lei, YAO Kai, LI Huimin, et al. Mechanical properties of composite bi-directional corrugated sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3661-3671. doi: 10.13801/j.cnki.fhclxb.20210126.001
Citation: ZHOU Lei, YAO Kai, LI Huimin, et al. Mechanical properties of composite bi-directional corrugated sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3661-3671. doi: 10.13801/j.cnki.fhclxb.20210126.001

Mechanical properties of composite bi-directional corrugated sandwich structure

doi: 10.13801/j.cnki.fhclxb.20210126.001
  • Received Date: 2020-12-02
  • Accepted Date: 2021-01-13
  • Available Online: 2021-01-26
  • Publish Date: 2021-11-01
  • To improve the transverse mechanical heterogeneity of conventional uni-directional corrugated sandwich structures, a new type of bi-directional composite corrugated sandwich structure was designed. Considering the difficulty of manufacturing the bi-directional corrugated sandwich structure, a procese based on vacuum assistant resin infusion (VARI) was proposed for high efficiency and quality preparation. The prepared structures were subjected to compression, bending and shear tests. The failure modes and mechanism of the bi-directional composite sandwich structures were analyzed, the strength and modulus of the structure under different load conditions were obtained, and the comparison between the bi-directional and uni-directional corrugated sandwich structure was made. The results show that the glass fiber/epoxy resin core is the main bearing part under the compression load, and the failure of the structure is mainly reflected in the buckling, fracture and delamination of the core. Under the bending load, caused by the lower compressive strength than its tensile strength of fiber, the upper panel first reaches the failure load under the pressure head. The bending failure modes of the structure are mainly the fracture and debonding of upper panel. The shear failure of the structure is mainly caused by the debonding of the foam and the panel and the collapse of the foam, but the core and the panel are not obviously destroyed. Compared with uni-directional corrugated sandwich structure, the mechanical properties of bi-directional corrugated sandwich structure are significantly improved.

     

  • loading
  • [1]
    MARTINEZ O A, SANKAR B V, HAFTKA R T, et al. Micromechanical analysis of composite corrugated-core sandwich panels for integral thermal protection systems[J]. AIAA Journal,2007,45(9):2323-2336. doi: 10.2514/1.26779
    [2]
    THILL C, ETCHES J A, BOND I P, et al. Composite corru-gated structures for morphing wing skin applications[J]. Smart Materials and Structures,2010,19(12):1-10.
    [3]
    KNOX E M, COWLING M J, WINKLE I E J M S. Adhesively bonded steel corrugated core sandwich construction for marine applications[J]. Marine Structures, 1998, 11(4): 185-204.
    [4]
    LIANG C C, YANG M F, WU P W. Optimum design of metallic corrugated core sandwich panels subjected to blast loads[J]. Ocean Engineering,2001,28(7):825-861. doi: 10.1016/S0029-8018(00)00034-2
    [5]
    DUBINA D, UNGUREANU V, GîLIA L. Cold-formed steel beams with corrugated web and discrete web-to-flange fasteners[J]. Steel Construction, 2013, 6(2): 74-81.
    [6]
    CARTIE D D, FLECK N A. The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels[J]. Composites Science and Technology,2003,63(16):2401-2409. doi: 10.1016/S0266-3538(03)00273-2
    [7]
    PETRAS A, SUTCLIFFE M P F. Failure mode maps for honey-comb sandwich panels[J]. Composite Structures,1999,44(4):237-252. doi: 10.1016/S0263-8223(98)00123-8
    [8]
    FENG L J, YANG Z T, YU G C, et al. Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases[J]. Composite Structures,2018,201:845-856. doi: 10.1016/j.compstruct.2018.06.080
    [9]
    FINNEGAN K, KOOISTRA G, WADLEY H N G, et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International journal of materials research,2007,98(12):1264-1272. doi: 10.3139/146.101594
    [10]
    XIONG J, MA L, VAZIRI A, et al. Mechanical behavior of carbon fiber composite lattice core sandwich panels fabri-cated by laser cutting[J]. Acta Materialia,2012,60(13-14):5322-5334. doi: 10.1016/j.actamat.2012.06.004
    [11]
    XU G D, ZHAI J J, ZENG T, et al. Response of composite sandwich beams with graded lattice core[J]. Composite Structures,2015,119:666-676. doi: 10.1016/j.compstruct.2014.09.042
    [12]
    ZHANG G Q, WANG B, MA L, et al. Response of sandwich structures with pyramidal truss cores under the compression and impact loading[J]. Composite Structures,2013,100:451-63. doi: 10.1016/j.compstruct.2013.01.012
    [13]
    KHALID Y A, CHAN C L, SAHARI B B, et al. Bending behaviour of corrugated web beams[J]. Journal of Materials Processing Technology,2004,150(3):242-254. doi: 10.1016/j.jmatprotec.2004.02.042
    [14]
    VALDEVIT L, WEI Z, MERCER C, et al. Structural perfor-mance of near-optimal sandwich panels with corrugated cores[J]. International Journal of Solids and Structures,2006,43(16):4888-4905. doi: 10.1016/j.ijsolstr.2005.06.073
    [15]
    CHANG W S, VENTSEL E, KRAUTHAMMER T, et al. Ben-ding behavior of corrugated-core sandwich plates[J]. Composite Structures,2005,70(1):81-89. doi: 10.1016/j.compstruct.2004.08.014
    [16]
    MALCOM A J, ARONSON M T, DESHPANDE V S, et al. Compressive response of glass fiber composite sandwich structures[J]. Composites Part A: Applied Science and Manufacturing,2013,54:88-97. doi: 10.1016/j.compositesa.2013.07.007
    [17]
    GAZOR M S, RAHIMI G H, FARROKHABADI A. The effect of the arrangement of corrugated composite on the R-curve of the sandwich structures with hybrid corrugated/foam core under mode I loading[J]. Theoretical and Applied Fracture Mechanics,2018,96:326-333. doi: 10.1016/j.tafmec.2018.05.011
    [18]
    SHU C F, HOU S J. Theoretical prediction on corrugated sandwich panels under bending loads[J]. Acta Mechanica Sinica,2018,34(5):925-935. doi: 10.1007/s10409-018-0767-y
    [19]
    DAYYANI I, ZIAEI-RAD S, SALEHI H. Numerical and experi-mental investigations on mechanical behavior of compo-site corrugated core[J]. Applied Composite Materials,2012,19(3-4):705-721. doi: 10.1007/s10443-011-9238-3
    [20]
    XU G D, WANG Z H, ZENG T, et al. Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores[J]. Composites Science and Technology,2018,156:296-304. doi: 10.1016/j.compscitech.2018.01.015
    [21]
    ZHANG J, SUPERNAK P, MUELLER-ALANDER S, et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure[J]. Materials & Design,2013,52:767-773. doi: 10.1016/j.matdes.2013.05.018
    [22]
    THILL C, ETCHES J A, BOND I P, et al. Investigation of trapezoidal corrugated aramid/epoxy laminates under large tensile displacements transverse to the corrugation direction[J]. Composites Part A: Applied Science and Manufacturing,2010,41(1):168-176. doi: 10.1016/j.compositesa.2009.10.004
    [23]
    REJAB M R M, CANTWELL W J. The mechanical behaviour of corrugated-core sandwich panels[J]. Composites Part B: Engineering,2013,47:267-277. doi: 10.1016/j.compositesb.2012.10.031
    [24]
    HOU S J, SHU C F, ZHAO S Y, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading[J]. Composite Structures,2015,126:371-385. doi: 10.1016/j.compstruct.2015.02.039
    [25]
    KAZEMAHVAZI S, ZENKERT D. Corrugated all-composite sandwich structures. Part 1: Modeling[J]. Composites Science and Technology,2009,69(7-8):913-919. doi: 10.1016/j.compscitech.2008.11.030
    [26]
    KAZEMAHVAZI S, TANNER D, ZENKERT D. Corrugated all-composite sandwich structures. Part 2: Failure mecha-nisms and experimental programme[J]. Composites Science and Technology,2009,69(7-8):920-925. doi: 10.1016/j.compscitech.2008.11.035
    [27]
    SHIMANSKY R A, LELE M M. Transverse stiffness of a sinusoidally corrugated plate[J]. Mechanics Based Design of Structures and Machines,1995,23(3):439-451. doi: 10.1080/08905459508905246
    [28]
    SEONG D Y, JUNG C G, YANG D Y, et al. Quasi-isotropic bending responses of metallic sandwich plates with bi-di-rectionally corrugated cores[J]. Materials & Design,2010,31(6):2804-2812. doi: 10.1016/j.matdes.2010.01.009
    [29]
    LI H, GE L, LIU B, et al. An equivalent model for sandwich panel with double-directional trapezoidal corrugated core[J]. Journal of Sandwich Structures & Materials,2019,22(7):2445-2465.
    [30]
    XING Y, YANG S, LU S, et al. Effect of bonding parameters on compression mechanical properties of bi-directional corrugated honeycomb aluminum[J]. Journal of Adhesion,2020(2):1-10.
    [31]
    XING Y D, YANG S Y, LU S Q, et al. Mechanical properties of bi-directional corrugated honeycomb aluminum filled with expanded polypropylene under quasi-static compression[J]. International Journal of Crashworthiness,2020,Ahead-of-print:1-10.
    [32]
    LI S G, FENG Y X, WANG M Y, et al. Mechanical behavior of natural fiber-based bi-directional corrugated lattice sandwich structure[J]. Materials,2018,11(12):14.
    [33]
    LI S G, FENG Y X, QIN J K, et al. Bending performance of a jute fiber and epoxy resin composite sandwich structure with a bi-directional corrugated truss core[J]. Fibers and Polymers,2019,20(10):2166-2174. doi: 10.1007/s12221-019-1204-y
    [34]
    YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design,2017,135:275-290. doi: 10.1016/j.matdes.2017.09.040
    [35]
    李会民, 周磊, 雷红帅, 等. 一种双向波纹点阵增强型复合材料夹层结构: 中国, CN109318541A [P]. 2019-02-12.

    LI Huimin, ZHOU Lei, LEI Hongshuai, et al. A bidirectional corrugated lattice reinforced composite sandwich structure: China, CN109318541A[P].2019-02-12(in Chinese).
    [36]
    中国国家标准化管理委员会(标准制定单位). 纤维增强复合材料弹性常数测试方法: GB/T 32376—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Elastic constant test method for fibre reinforced composites: GB/T 32376—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [37]
    中国国家标准化管理委员会(标准制定单位). 夹层结构或芯子平压性能试验方法: GB/T 1453-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for flatwise compression properties of sandwich construction or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [38]
    中国国家标准化管理委员会(标准制定单位). 夹层结构弯曲性能试验方法: GB/T 1456—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for flexural properties of sandwich constructions: GB/T 1456—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [39]
    中国国家标准化管理委员会(标准制定单位). 夹层结构或芯子剪切性能试验方法: GB/T 1455—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for shear properties of sandwich constructions or cores: GB/T 1455—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (904) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return