Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
CHENG Fei, JIANG Hongyong. Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002
Citation: CHENG Fei, JIANG Hongyong. Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002

Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp

doi: 10.13801/j.cnki.fhclxb.20210122.002
  • Received Date: 2020-12-03
  • Accepted Date: 2021-01-15
  • Available Online: 2021-01-22
  • Publish Date: 2021-11-01
  • Aiming at the large brittleness of resin adhesive layer, structural defect of carbon fiber layer, prone to peeling and delamination, etc. the carbon fiber reinforced plastics (CFRP) with aramid pulp (AP) toughening were prepared by compression molding via using AP with high strength and toughness as interface enhancer. The effects of AP with different interface densities on the compressive strength, impact resistance and compressive strength after damages of CFRP were studied. The compressive strengths of directly testing, testing after impact, drill and drill-impact are improved by 37.3%, 41.0% and 41.8% correspondingly for longitudinal CFRP with AP interface density of 6 g/m2. AP improves brittleness of resin, eliminates interlayer resin-rich region, toughens the interlayer toughness and suppressed cracks generation. The formed AP fiber-bridging structure throughout resin layer and carbon fiber layer not only remove the bonding interface defect, but also build quasi-Z fiber distribution to achieve tightly connected structure, which prevent cracks expanding along interlayer and delamination failure, thereby to achieve structure reinforced.

     

  • loading
  • [1]
    鲍学淳, 程礼, 陈煊, 等. 碳纤维树脂基复合材料三点弯曲超高周疲劳实验研究[J]. 机械强度, 2019, 41(4):858-863.

    BAO X C, CHENG L, CHEN X, et al. Experimental study on three-point bending ultra-high cycle fatigue of carbon fiber resin matrix composites[J]. Mechanical Strength,2019,41(4):858-863(in Chinese).
    [2]
    陈鑫, 马士东, 刘升辉. 基于ABAQUS碳纤维树脂基复合材料抗冲击性能研究[J]. 科技风, 2019(2):194-195.

    CHEN X, MA S D, LIU S H. Research on impact resistance of carbon fiber resin matrix composites based on ABAQUS[J]. KEJIFENG,2019(2):194-195(in Chinese).
    [3]
    王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究[J]. 振动与冲击, 2018, 37(7):172-178.

    WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes[J]. Journal of Vibration and Shock,2018,37(7):172-178(in Chinese).
    [4]
    徐林, 孙文磊. 风力发电机复合材料叶片结构特性分析[J]. 可再生能源, 2013, 31(3):56-59.

    XU L, SUN W L. Structural characteristics analysis of wind turbine composite material blade[J]. Renewable Energy Resource,2013,31(3):56-59(in Chinese).
    [5]
    包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(9):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(9):52-63(in Chinese).
    [6]
    黄硕, 王亮, 陈超. 我国碳纤维复合材料在汽车上的应用趋势和建议[J]. 中国材料科技与设备, 2015, 3:59-62.

    HUANG S, WANG L, CHEN C. Application and prospect of carbon fiber composite material in the automotive[J]. Materials Science Technology & Equipment,2015,3:59-62(in Chinese).
    [7]
    牛峰, 王建平, 马春草, 等. 碳纤维复合材料在舰艇显控台上的应用[J]. 舰船科学技术, 2018, 41(6):85-88.

    NIU F, WANG J P, MA C C, et al. The application of carbon fiber composite material in naval vessel console[J]. Ship Science and Technology,2018,41(6):85-88(in Chinese).
    [8]
    王晨阳. 碳纤维树脂基复合材料在交通装备领域的应用[J]. 中国战略新兴产业, 2019(4):189-191.

    WANG C Y. Application of carbon fiber resinbased composite materials in the field of transportation equipment[J]. China Strategic Emerging Industry,2019(4):189-191(in Chinese).
    [9]
    罗永康, 李炜, 胡红, 等. 碳纤维复合材料在风力发电机叶片中的应用[J]. 电网与清洁能源, 2008, 24(11):53-57. doi: 10.3969/j.issn.1674-3814.2008.11.012

    LUO Y K, LI W, HU H, et al. Application of carbon fiber composite materials in wind turbine blades[J]. Power System and Clean Energy,2008,24(11):53-57(in Chinese). doi: 10.3969/j.issn.1674-3814.2008.11.012
    [10]
    杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [11]
    ZHAI Y J, WANG Z C, HUANG W, et al. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder[J]. Materials Science & Engineering A,2011,528(24):7295-7300.
    [12]
    YUAN B Y, HU Y S, CHENG F, et al. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils[J]. Composites Part A-Applied Science and Manufacturing,2020,131:105831.
    [13]
    GARCIA-RODRIGUEZ S M, COSTA J, SINGERY V, et al. The effect interleaving has on thin-ply non-crimp fabric laminate impact response: X-ray tomography investigation[J]. Composites Part A: Appllied Science Manufacture,2018,107:409-420. doi: 10.1016/j.compositesa.2018.01.023
    [14]
    NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites—A review[J]. Material and Design,2015,85:582-597. doi: 10.1016/j.matdes.2015.07.001
    [15]
    YUAN B Y, TAN B, HU Y S, et al. Improving impact resistance and residual compressive strength of carbon fibre composites using un-bonded non-woven short aramid fibre veil[J]. Composites Part A: Applied Science and Manufacturing,2019,121:439-448. doi: 10.1016/j.compositesa.2019.04.006
    [16]
    林智育, 许希武. 复合材料层板低速冲击后剩余压缩强度[J]. 复合材料学报, 2008, 25(1):140-146. doi: 10.3321/j.issn:1000-3851.2008.01.024

    LIN Z Y, XU X W. Residual compressive strength of composite laminates after low-velocity impact[J]. Acta Materiae Compositae Sinica,2008,25(1):140-146(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.024
    [17]
    管清宇, 严文军, 吴光辉, 等. 碳纤维/环氧树脂复合材料层压板冲击凹坑的回弹特性[J]. 复合材料学报, 2020, 37(2):284-292.

    GUAN Q Y, YAN W J, WU G H, et al. Impact dent relaxation characteristic of carbon fiber/epoxy resin composite laminate[J]. Acta Materiae Compositae Sinica,2020,37(2):284-292(in Chinese).
    [18]
    贾晓龙, 还献华, 齐鹏飞, 等. 碳纤维树脂基复合材料的高性能化[J]. 科学通报, 2018, 63(34):3555-3569. doi: 10.1360/N972018-00842

    JIA X L, HUAN X H, QI P F, et al. Performance improvement in carbon fiber reinforced polymer-based composites[J]. Chinese Science Bulletin,2018,63(34):3555-3569(in Chinese). doi: 10.1360/N972018-00842
    [19]
    YAO X, GAO X, JIANG J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B : Engineering,2018,132:170-7. doi: 10.1016/j.compositesb.2017.09.012
    [20]
    OU Y, GONZALEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [21]
    ZHANG J, LIN T, WANG X. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science Technology,2010,70:1660-6. doi: 10.1016/j.compscitech.2010.06.019
    [22]
    YANG H H. Aromatic high strength fibres[M]. New York: Wiley-Inter science, 1989
    [23]
    SOHN M S, HU X Z. Mode Ⅱ delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement[J]. Composites Science and technology,1994,52(3):439-448. doi: 10.1016/0266-3538(94)90179-1
    [24]
    YASAEE M, BOND I P, TRASK R S, et al. Mode Ⅱ interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43:121-128. doi: 10.1016/j.compositesa.2011.09.026
    [25]
    YUAN B Y, WEE E P J, CHOENG J L K, et al. Quasi-Z-directional toughening from un-bonded non-woven veil at interface in laminar composites[J]. Composites Communications,2017,6:20-24. doi: 10.1016/j.coco.2017.07.007
    [26]
    CHENG F, HU Y S, YUAN B Y, et al. Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical Aramid pulp micro/nano-fibers[J]. Composites Part B: Engineering,2020,188:107897. doi: 10.1016/j.compositesb.2020.107897
    [27]
    HU Y S, CHENG F, YUAN B Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology,2020,192:108095. doi: 10.1016/j.compscitech.2020.108095
    [28]
    CALLISTER W D and RETHWISCH D G. Materials science and engineering[M]. New York: John wiley & sons, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1059) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return