Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LIAO Huanchen, LI Wen, JIANG Zhenyu, et al. Modeling of reinforcing effects of three kinds of typical nanophases on interfacial bonding in multiscale composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3714-3725. doi: 10.13801/j.cnki.fhclxb.20210119.003
Citation: LIAO Huanchen, LI Wen, JIANG Zhenyu, et al. Modeling of reinforcing effects of three kinds of typical nanophases on interfacial bonding in multiscale composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3714-3725. doi: 10.13801/j.cnki.fhclxb.20210119.003

Modeling of reinforcing effects of three kinds of typical nanophases on interfacial bonding in multiscale composites

doi: 10.13801/j.cnki.fhclxb.20210119.003
  • Received Date: 2020-11-20
  • Accepted Date: 2021-01-06
  • Available Online: 2021-01-19
  • Publish Date: 2021-11-01
  • Experimental study has shown that the interfacial bonding between fibers and matrix can be significantly improved by introducing nanophases into fiber reinforced polymer composites. The reinforcing effects of various nanophases on the obtained multi-scale composites were found different, which were associated with the shape and dimension of the nanophases. In this paper, a multiscale model was proposed based on the cohesive energy model to explore the source of the difference in reinforcing efficiency introduced by the three kinds of typical nanophases, i.e., carbon nanotubes, spherical fullerene nanoparticles and graphene nanoplates. The model elucidates how the shape and quantity of nanophases influence the strength of interfacial bonding in multiscale composites. The proposed model was verified according to the experimental results obtained through transverse tension tests of fiber bundle composites. The theoretical prediction shows a good agreement with the measured data.

     

  • loading
  • [1]
    曹莹, 吴林志, 张博明. 碳纤维复合材料界面性能研究[J]. 复合材料学报, 2000, 17(2):89-93. doi: 10.3321/j.issn:1000-3851.2000.02.020

    CAO Ying, WU Linzhi, ZHANG Boming. Investigation of interfacial properties of composites reinforced by carbon fiber[J]. Acta Materiae Compositae Sinica,2000,17(2):89-93(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.02.020
    [2]
    RENNHOFER H, PUCHEGGER S, PABISCH S, et al. The structural evolution of multi-layer graphene stacks in carbon fibers under load at high temperature–A synchrotron radiation study[J]. Carbon,2014,80:373-381. doi: 10.1016/j.carbon.2014.08.076
    [3]
    LIANG Y L, PEARSON R A. Toughening mechanisms in epoxy–silica nanocomposites[J]. Polymer,2009,50(20):4895-4905. doi: 10.1016/j.polymer.2009.08.014
    [4]
    BEKYAROVA E, THOSTENSON E T, YU A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir: the Acs Journal of Surfaces and Colloids,2007,23(7):3970. doi: 10.1021/la062743p
    [5]
    ZHAO Z, TENG K, LI N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface[J]. Composite Structures,2017,159:761-772. doi: 10.1016/j.compstruct.2016.10.022
    [6]
    WANG K, CHEN L, WU J, et al. Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms[J]. Macromolecules,2005,38(3):788-800. doi: 10.1021/ma048465n
    [7]
    GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–A comparative study[J]. Compo-sites Science and Technology,2005,65(15-16):2300-2313. doi: 10.1016/j.compscitech.2005.04.021
    [8]
    THOSTENSON E T, LI W Z, WANG D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale composites[J]. Journal of Applied Physics,2002,91(9):6034-6037. doi: 10.1063/1.1466880
    [9]
    YAO H, SUI X, ZHAO Z, et al. Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing[J]. Applied Surface Science,2015,347(AUG. 30):583-590.
    [10]
    WU G, MA L, LIU L, et al. Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering,2015,82:50-58. doi: 10.1016/j.compositesb.2015.08.012
    [11]
    JIANG Z, ZHANG H, ZHANG Z, et al. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J]. Composites Part A: Applied Science and Manufacturing,2008,39(11):1762-1767. doi: 10.1016/j.compositesa.2008.08.005
    [12]
    SUBHANKAR D, SUDIPTA H, ARIJIT S, et al. Assessing nano scratch behavior of epoxy nanocomposite toughened with silanized fullerene[J]. ACS Applied Nano Materials,2018,1(7):3653-3662. doi: 10.1021/acsanm.8b00763
    [13]
    ZHANG X, FAN X, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials and Interfaces,2012,4(3):1543. doi: 10.1021/am201757v
    [14]
    CHEN L, JIN H, XU Z, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Materials Chemistry and Physics,2014,145(1-2):186-196. doi: 10.1016/j.matchemphys.2014.02.001
    [15]
    CHEN L, JIN H, XU Z, et al. Role of a gradient interface layer in interfacial enhancement of carbon fiber/epoxy hierarchical composites[J]. Journal of Materials Science,2015,50(1):112-121. doi: 10.1007/s10853-014-8571-y
    [16]
    ROSEN B W. Tensile failure of fibrous composites[J]. AIAA Journal,2013,2(11):1985-1991.
    [17]
    GAO X L, LI K. A shear-lag model for carbon nanotube-reinforced polymer composites[J]. International Journal of Solids and Structures,2005,42(5):1649-1667.
    [18]
    DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
    [19]
    BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics,1959,23(3):622-636. doi: 10.1016/0021-8928(59)90157-1
    [20]
    XIA W, SONG J, MENG Z, et al. Designing multi-layer graphene-based assemblies for enhanced toughness in nacre-inspired nanocomposites[J]. Molecular Systems Design and Engineering,2016,1(1):40-47. doi: 10.1039/C6ME00022C
    [21]
    ZHAO J, JIANG J W, JIA Y, et al. A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates[J]. Carbon,2013,57(3):108-119.
    [22]
    JIANG L Y, HUANG Y, JIANG H, et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force[J]. Journal of the Mechanics and Physics of Solids,2006,54(11):2436-2452. doi: 10.1016/j.jmps.2006.04.009
    [23]
    FRANKLAND S J V, HARIK V M, ODEGARD G M, et al. The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation[J]. Composites Science and Technology,2003,63(11):1655-1661. doi: 10.1016/S0266-3538(03)00059-9
    [24]
    TAN H, JIANG L Y, HUANG Y, et al. The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials[J]. Composites Science and Technology,2007,67(14):2941-2946. doi: 10.1016/j.compscitech.2007.05.016
    [25]
    HE X, WANG C, TONG L, et al. A pullout model for inclined carbon nanotube[J]. Mechanics of Materials,2012,52(10):28-39.
    [26]
    COOPER C A, COHEN S R, BARBER A H, et al. Detachment of nanotubes from a polymer matrix[J]. Applied Physics Letters,2002,81(20):3873-3875. doi: 10.1063/1.1521585
    [27]
    YU B, JIANG Z Y, TANG X Z, et al. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating[J]. Composites Science and Technology,2014,99:131-140. doi: 10.1016/j.compscitech.2014.05.021
    [28]
    SHOKOOHI S, AREFAZAR A, KHOSROKHAVAR R. Silane coupling agents in polymer-based reinforced composites: A review[J]. Journal of Reinforced Plastics and Composites,2008,27(5):473-485. doi: 10.1177/0731684407081391
    [29]
    VAST L, PHILIPPIN G, DESTRÉE A, et al. Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes[J]. Nanotechnology,2004,15(7):781. doi: 10.1088/0957-4484/15/7/011
    [30]
    MA P C, KIM J K, TANG B Z. Functionalization of carbon nanotubes using a silane coupling agent[J]. Carbon,2006,44(15):3232-3238. doi: 10.1016/j.carbon.2006.06.032
    [31]
    KATHI J, RHEE K Y. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane[J]. Journal of Materials Science,2008,43(1):33-37. doi: 10.1007/s10853-007-2209-2
    [32]
    李稳, 陈蔚, 汤立群, 等. 基于纤维束/环氧树脂复合材料试验的单向层合板横向拉伸强度预测方法[J]. 复合材料学报, 2018, 35(2):340-346.

    LI Wen, CHEN Wei, TANG Liqun, et al. A Prediction method of transverse tensile strength of unidirectional laminates based on test of fiber bundle composites[J]. Acta Materiae Compositae Sinica,2018,35(2):340-346(in Chinese).
    [33]
    International Organization for Standardization. Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: ISO 527-2[S]. Switzerland: International Organization for Standardization, 1993.
    [34]
    LI W, CHEN W, TANG L Q, et al. A general strength model for fiber bundle composites under transverse tension or interlaminar shear[J]. Composites Part A: Applied Science and Manufacturing,2019,121:45-55. doi: 10.1016/j.compositesa.2019.03.009
    [35]
    WAN Y J, GONG L X, TANG L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites Part A: Applied Science and Manufacturing,2014,64:79-89. doi: 10.1016/j.compositesa.2014.04.023
    [36]
    CHEN L, WEI F, LIU L, et al. Grafting of silane and graphene oxide onto PBO fibers: Multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties[J]. Composites Science and Technology,2015,106:32-38. doi: 10.1016/j.compscitech.2014.10.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (834) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return