Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LIU Xiaoxuan, HAN Fei, LIU Hongbo, et al. Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002
Citation: LIU Xiaoxuan, HAN Fei, LIU Hongbo, et al. Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002

Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound

doi: 10.13801/j.cnki.fhclxb.20210119.002
  • Received Date: 2020-11-24
  • Accepted Date: 2021-01-13
  • Available Online: 2021-01-19
  • Publish Date: 2021-11-01
  • The 1-stage FeCl3-intercalated graphite intercalation compound (FeCl3-GIC) were prepared by a molten salt method using FeCl3 and natural flake graphite as raw materials. Subsequently, a conductive layer of polypyrrole (PPy) were uniformly coated on the surface of the FeCl3-GIC particles by in-situ polymerization to form a core-shell structured (FeCl3-GIC)@PPy composite material. Various characterization methods were employed to study the surface morphology and microstructure evolution of FeCl3-GIC before and after polypyrrole coating. The results show that a uniform and dense polypyrrole layer with a thickness of 35 nm is tightly coated on the surface of the micro-sized FeCl3-GIC particles. After coating, the conductivity of the (FeCl3-GIC)@PPy composite is significantly improved for the powder resistivity is reduced from 3.1×10−3 Ω·cm of FeCl3-GIC to 2.3×10−3 Ω·cm of (FeCl3-GIC)@PPy. As an anode material for sodium ion storage, it is found that the (FeCl3-GIC)@PPy anode exhibits the improved reversible capacitiy, rate capability and cycling stability compared with the naked FeCl3-GIC anode. Specially, the specific capacity of (FeCl3-GIC)@PPy remains steady with a high sodium storage value of 281 mA·h·g−1 after 100 cycles at the current density of 0.1 A·g−1, while the FeCl3-GIC anode shows a continuous capacity decay with a low value of 157 mA·h·g−1 after 100 cycles. Additionally, even at a high current density of 1.0 A·g−1, the (FeCl3-GIC)@PPy anode delivers a remained sodium storage capacity of 181 mA·h·g−1 after 500 cycles, accompanying with a fascinating capacity retention ratio of 89%.

     

  • loading
  • [1]
    MASSÉ R C, LIU C, LI Y, et al. Energy storage through intercalation reactions: electrodes for rechargeable batteries[J]. National Science Review,2017,4(1):26-53. doi: 10.1093/nsr/nww093
    [2]
    WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews,2014,114(23):11414-11443. doi: 10.1021/cr5003003
    [3]
    KINOSHITA H, JEON I, MARUYAMA M, et al. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation[J]. Advanced Materials,2017,29(41):1702141. doi: 10.1002/adma.201702141
    [4]
    XU J, DOU Y, WEI Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Advanced Science,2017,4(10):1700146. doi: 10.1002/advs.201700146
    [5]
    PENG F, MENG F, GUO Y, et al. Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16744-16753.
    [6]
    BOINTON T H, JONES G F, DE SANCTIS A, et al. Large-area functionalized CVD graphene for work function matched transparent electrodes[J]. Scientific Reports,2015,5(1):1-6. doi: 10.9734/JSRR/2015/14076
    [7]
    JIANG J, YAN P, ZHOU Y, et al. Interplanar growth of 2D non-Van der Waals Co2N-based heterostructures for efficient overall water splitting[J]. Advanced Energy Materials,2020,10(44):2002214. doi: 10.1002/aenm.202002214
    [8]
    杨绍斌, 夏英凯, 刘凤霞, 等. 活化剂对焦煤基多孔碳制备的影响及其在锂硫电池中的应用[J]. 复合材料学报, 2020, 37(3):716-723.

    YANG Shaobin, XIA Yingkai, LIU Fengxia, et al. Effect of activator on perparation of coal-based porous carbon and its application in lithium-sulfur batteries[J]. Acta Materiae Compositae Sinica,2020,37(3):716-723(in Chinese).
    [9]
    ZHANG L, WANG H. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl and ethylene carbonates[J]. Journal of Energy Chemistary,2021,58:233-236. doi: 10.1016/j.jechem.2020.10.012
    [10]
    DIVYA M L, NATARAJAN S, LEE Y S, et al. Highly reversible Na-intercalation into graphite recovered from spent Li-ion batteries for high-energy Na-ion capacitor[J]. Chemsuschem,2020,13(21):5654-5663. doi: 10.1002/cssc.202001355
    [11]
    ZHANG C, MA J, HAN F, et al. Strong anchoring effect of ferric chloride-graphite intercalation compounds(FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage[J]. Journal of Materials Chemistry A,2018,6(37):17982-17993. doi: 10.1039/C8TA06670A
    [12]
    KIM K, GUO Q, TANG L, et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries[J]. Angewandte Chemie,2020,132(45):20096-20100. doi: 10.1002/ange.202009172
    [13]
    LEI Y, CHEN Y, WANG H, et al. A graphite intercalation composite as the anode for the potassium-ion oxygen battery in a concentrated ether-based electrolyte[J]. ACS Applied Materials & Interfaces,2020,12(33):37027-37033.
    [14]
    ZHOU W, SIT P H L. First-principles understanding of the staging properties of the graphite intercalation compounds towards dual-ion battery applications[J]. ACS Omega,2020,5(29):18289-18300. doi: 10.1021/acsomega.0c01950
    [15]
    WANG F, YI J, WANG Y, et al. Graphite intercalation compounds(GICs): A new type of promising anode material for lithium-ion batteries[J]. Advanced Energy Materials,2014,4(2):1300600. doi: 10.1002/aenm.201300600
    [16]
    LI Z, ZHANG C, HAN F, et al. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries[J]. Nano Research,2019,12(8):1836-1844. doi: 10.1007/s12274-019-2444-2
    [17]
    魏文丽. 聚吡咯基电极材料的设计及其在锂电池中的应用[D]. 兰州: 兰州大学, 2019.

    WEI Wenli. Design of polypyrrole-based electrode materials and its application in lithium battery[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
    [18]
    XU J, WANG D X, YUAN Y, et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Eletronics,2015,24:153-159.
    [19]
    ZHONG X B, WANG H Y, YANG Z Z, et al. Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithiun-ion batteries[J]. Journal of Power Sources,2015,296:298-304. doi: 10.1016/j.jpowsour.2015.07.047
    [20]
    CHEN G F, LI XX, ZHANG L Y, et al. A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors[J]. Advanced Materials,2016,28(35):7680-7687. doi: 10.1002/adma.201601781
    [21]
    汪杰. 聚吡咯及其复合材料的制备及性能研究[D]. 合肥: 中国科学技术大学, 2017.

    WANG Jie. Fabrication and application of polypyrrole and its composites[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [22]
    沈兰波. 导电聚合物合成新策略探索[D]. 济南: 山东大学, 2020.

    SHEN Lanbo. New strategies for the synthesis of conducting polymers[D]. Jinan: Shandong University, 2020(in Chinese).
    [23]
    LI Z, ZHANG C, HAN F, et al. Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride-graphite intercalation compounds(MoCl5-GICs)[J]. Journal of Materials Chemistry A,2020,8(5):2430-2438. doi: 10.1039/C9TA12651A
    [24]
    LI D, ZHU M, CHEN L, et al. Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries[J]. Advanced Materials Interfaces,2018,5(15):1800606. doi: 10.1002/admi.201800606
    [25]
    SUN Y, HAN F, ZHANG C, et al. Intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology,2019,7(4):1801091. doi: 10.1002/ente.201801091
    [26]
    HAN F, LI D, LI W, et al. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes[J]. Advanced Functional Materials,2013,23(13):1692-1700. doi: 10.1002/adfm.201202254
    [27]
    HAN F, ZHANG C, SUN B, et al. Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries[J]. Carbon,2017,118:731-742. doi: 10.1016/j.carbon.2017.03.038
    [28]
    CHUNG G C, KIM H J, YU S I, et al. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation[J]. Journal of The Electrochemical Society,2000,147(12):4391-4398. doi: 10.1149/1.1394076
    [29]
    JACHE B, ADELHELM P. Use of graphite as a highly reversibie electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. doi: 10.1002/anie.201403734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1236) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return