Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
CHEN Yanwei, FENG Jili, LI Fengchen, et al. Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004
Citation: CHEN Yanwei, FENG Jili, LI Fengchen, et al. Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3939-3949. doi: 10.13801/j.cnki.fhclxb.20210115.004

Mode Ⅱ fracture parameters of concrete with different coarse aggregate volume fractions

doi: 10.13801/j.cnki.fhclxb.20210115.004
  • Received Date: 2020-11-18
  • Accepted Date: 2021-01-04
  • Available Online: 2021-01-15
  • Publish Date: 2021-11-01
  • This paper focuses on the mode Ⅱ fracture behaviors of concrete with different coarse aggregate volume fractions by laboratory experiments. Based on the maximum paste thickness (MPT) theory, the empirical relationship between the fracture toughness KⅡ C and the coarse aggregate volume fraction Va was proposed. The mode Ⅱ fracture parameters including peak load, fracture toughness and energy release rate were determined by the compression on half part of the non-notched specimen with different coarse aggregate volume fractions of 19%, 25%, 31% and 37%. The crack distribution on the surface of the fracture ligaments was analyzed. The results show that both mode Ⅱ fracture toughness KⅡ C and the critical energy release rate GⅡ C enhance with the increase of coarse aggregate volume fraction from 19% to 37% while the crack paths become more tortuous and longer with the increase of coarse aggregate volume fraction. The fracture patterns of all specimens are basically identical, even if the coarse aggregate volume fractions are different. It is found that the shear crack propagation is mainly around the middle ligaments. Additionally, the technique of digital image correlation (DIC) was employed during the tests to track the fracture evolution and characterize the strain localization regions as well as fracture process zone (FPZ). It is also observed by the DIC technique that there are more branches in FPZ and their shapes are more irregular as the coarse aggregate volume fraction increases.

     

  • loading
  • [1]
    AKCAY B, AGAR-OZBEK A S, BAYRAMOV F, et al. Interpretation of aggregate volume fraction effects on fracture behavior of concrete[J]. Construction & Building Materials,2012,28(1):437-443.
    [2]
    CHEN Bing, LIU Juanyu. Effect of aggregate on the fracture behavior of high strength concrete[J]. Construction & Building Materials,2004,18:585-590. doi: 10.1016/j.conbuildmat.2004.04.013
    [3]
    韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013(3):201-207.

    HAN Yudong, ZHANG Jun, GAO Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics,2013(3):201-207(in Chinese).
    [4]
    BEYGI M H A, KAZEMI M T, NIKBIN I M, et al. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete[J]. Cement & Concrete Research,2014,66:75-90. doi: 10.1016/j.cemconres.2014.06.008
    [5]
    ALYHYJA W S, DHAHEER M S A, AL-RUBAYE M M, et al. Influence of mix composition and strength on the fracture properties of self-compacting concrete[J]. Construction and Building Materials,2016,110:312-322. doi: 10.1016/j.conbuildmat.2016.02.037
    [6]
    RAO Q H, SUN Z Q, STEPHANSSON O, et al. Shear fracture (Mode Ⅱ) of brittle rock[J]. International Journal of Rock Mechanics & Mining Sciences,2003,40(3):355-375.
    [7]
    IOSIPESCU N. New accurate procedure for single shear testing of metals[J]. Journal of Materials,1967,2(3):537-566.
    [8]
    BAZANT Z P, PFEIFFER P A. Shear fracture tests of concrete[J]. Materials and Structures,1986,19(110):111-121.
    [9]
    DAVIES J. Numerical and experimental study of development of fracture path under mixed mode loading//VAN MIER J G M, ROTS J G, BAKKER A. Fracture processes in concrete, rock and ceramics[M]. London: E. &F. N. Spon, 1991: 717-726.
    [10]
    DAVIES J, YIM C W A, MORGAN T G, et al. Determination of fracture parameters of a punch-through shear specimen[J]. International Journal of Cement Composites and Lightweight Concrete,1988,10(1):33-41.
    [11]
    PRAKASH D, RAGHUPRASAD B K, DESAI V B. Mode-Ⅱ fracture of cementitious materials—Part I: Studies on specimens of some new geometries[J]. Journal of Structural Engineering,1999,26(1):11-18.
    [12]
    XU S, REINHARDT H W, GAPPOEV M. Mode Ⅱ fracture testing method for highly orthotropic materials like wood[J]. International Journal of Fracture,1995,75(3):185-214.
    [13]
    REINHARDT H W, OZBOLT J, XU S, et al. Shear of structural concrete members and pure mode Ⅱ testing[J]. Advanced Cement Based Materials,1997,5:75-85. doi: 10.1016/S1065-7355(96)00003-X
    [14]
    REINHARDT H W, XU S. Experimental determination of KⅡ C of normal strength concrete[J]. Materials and Structures,1998,31:296-302. doi: 10.1007/BF02480670
    [15]
    REINHARDT H W, XU S. A practical testing approach to determine mode Ⅱ fracture energy GⅡ F for concrete[J]. International Journal of Fracture,2000,105(2):107-125. doi: 10.1023/A:1007649004465
    [16]
    RAO T D G, KUMAR C N S. Fracture parameters of high-strength concrete-mode Ⅱ testing[J]. Magazine of Concrete Research,2010,62(3):157-162. doi: 10.1680/macr.2010.62.3.157
    [17]
    KUMAR C N S, RAO T D G. An empirical formula for mode-Ⅱ fracture energy of concrete[J]. KSCE Journal of Civil Engineering,2015,19(3):689-697. doi: 10.1007/s12205-014-1148-0
    [18]
    高洪波, 徐世烺, 吴智敏, 等. 混凝土断裂韧度KⅡ C的试验研究[J]. 水力发电学报, 2006(5):68-73. doi: 10.3969/j.issn.1003-1243.2006.05.015

    GAO Hongbo, XU Shilang, WU Zhimin, et al. Experimental study on fracture toughness KⅡ C of concrete[J]. Journal of Hydroelectric Engineering,2006(5):68-73(in Chinese). doi: 10.3969/j.issn.1003-1243.2006.05.015
    [19]
    覃茜, 徐千军. 成层混凝土的剪切强度和Ⅱ型断裂韧度[J]. 工程力学, 2019(9):188-196.

    QIN Xi, XU Qianjun. The shear strength and mode Ⅱ fracture toughness of layered concrete[J]. Engineering Mechanics,2019(9):188-196(in Chinese).
    [20]
    徐世烺, 喻常雄, 李庆华. 混凝土大坝接缝灌浆的剪切断裂过程及其断裂韧度测定[J]. 水利学报, 2007, 38(3):300-305.

    XU Shilang, YU Changxiong, LI Qinghua. Experimental study on shear fracture process and mode Ⅱ fracture toughness[J]. Journal of Hydraulic Engineering,2007,38(3):300-305(in Chinese).
    [21]
    邓爱民, 苟联盟, 徐道远. 2种Ⅱ型混凝土试件断裂韧度KⅡ C值的比较研究[J]. 防灾减灾工程学报, 2013(2):190-194.

    DENG Aimin, GOU Lianmeng, XU Daoyuan. Comparative research on fracture toughness KⅡ C of two types of mode Ⅱ concrete specimens[J]. Journal of Disaster Prevention and Mitigation Eengineering,2013(2):190-194(in Chinese).
    [22]
    高洪波. 混凝土Ⅰ型、Ⅱ型断裂参数确定的研究[D]. 大连: 大连理工大学, 2008.

    GAO Hongbo. Study on the determination of mode I and mode Ⅱ fracture parameters for concrete[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [23]
    徐世烺, 赵艳华. 混凝土Ⅱ型断裂与破坏过程的三维非线性有限元数值模拟[J]. 水力发电学报, 2004, 23(5):15-21. doi: 10.3969/j.issn.1003-1243.2004.05.004

    XU Shilang, ZHAO Yanhua. Numerical simulation of mode Ⅱ fracture and failure processes in concrete by 3-dimensional nonlinear FEM[J]. Journal of Hydroelectric Engineering,2004,23(5):15-21(in Chinese). doi: 10.3969/j.issn.1003-1243.2004.05.004
    [24]
    李庆华, 张逸风, 徐世烺, 等. 喷射UHTCC与混 凝土界面的Ⅱ型断裂试验研究[J]. 水利学报, 2018, 49(7):831-839.

    LI Qinghua, ZHANG Yifeng, XU Shilang, et al. Experimental study on mode Ⅱ fracture of interface between the UHTCC and concrete[J]. Journal of Hydraulic Engineering,2018,49(7):831-839(in Chinese).
    [25]
    LI Guodong, YU Jiangjiang, CAO Peng, et al. Experimental and numerical investigation on Ⅰ-Ⅱ mixed-mode fracture of concrete based on the Monte Carlo random aggregate distribution[J]. Construction & Building Materials,2018,194:523-534.
    [26]
    STRUBLE L, SKALNY J, MINDESS S. A review of the cement-aggregate bond[J]. Cement & Concrete Research,1980,10(2):277-286.
    [27]
    TRENDE U, BÜYÜKÖZTÜRK O. Size effect and influence of aggregate roughness in interface fracture of concrete composites[J]. ACI Materials Journal,1998,95(4):331-338.
    [28]
    MYONG L K, BUYUKOZTURK O, OUMERA A. Fracture analysis of mortar-aggregate interfaces in concrete[J]. Journal of Engineering Mechanics,1992,118(10):2031-2046. doi: 10.1061/(ASCE)0733-9399(1992)118:10(2031)
    [29]
    LARRARD F D, BELLOC A. Influence of aggregate on the compressive strength of normal and high-strength concrete[J]. ACI Materials Journal,1997,94(5):417-426.
    [30]
    WU Zhimin, RONG Hua, ZHENG Jianjun, et al. An experimental investigation on the FPZ properties in concrete using digital image correlation technique[J]. Engineering Fracture Mechanics,2011,78(17):2978-2990. doi: 10.1016/j.engfracmech.2011.08.016
    [31]
    AL-SHAYEA N. Comparing reservoir and outcrop specimens for mixed mode Ⅰ-Ⅱ fracture toughness of a limestone rock formation at various conditions[J]. Rock Mechanics & Rock Engineering,2002,35(4):271-297.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (990) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return