Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001
Citation: CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001

Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)

doi: 10.13801/j.cnki.fhclxb.20210113.001
  • Received Date: 2020-11-16
  • Accepted Date: 2021-01-05
  • Available Online: 2021-01-14
  • Publish Date: 2021-11-01
  • A novel strategy based on Metal-organic frameworks nanoparticles (MOFs NPs)-stabilized suspension polymerization has been achieved for the fabrication of multifunctional ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) composites. By using this technique, functional nanoparticles can be immobilized on the surface of polymer. In this paper, ZIF-8 and PB nanoparticles (NPs) were used as stabilizer for the suspension polymerization in water and ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) composites are successfully synthesized. ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) absorbed heat at 37.5℃, 39.1℃ and released it at 8.4℃, 10.1℃ with a heat storage capacity of 63 J/g, 68 J/g, respectively. The material retains its shape without any leakage at 60℃, which is much higher than that of the melting temperature of P(TDA-co-HDA). The ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) composites exhibit good crystallization behaviors and excellent thermal reliabilities after 1000 thermal cycles. The thermal properties of the ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) composites were also investigated. The novel shape-stabilized PCMs fabricated in this study have potential uses in thermal energy storage applications.

     

  • loading
  • [1]
    AYDM A A, OKUTAN H. High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage-1[J]. Solar Energy Materials & Solar Cells,2011,95(10):2752-2762.
    [2]
    WANG C Y, FENG L L, XIN G B, et al. Graphene oxide stabilized polyethylene glycol for heat storage[J]. Physical Chemistry Chemical Physics PCCP,2012,14(38):13233-13238. doi: 10.1039/c2cp41988b
    [3]
    LI D, WANG J P, WANG Y N, et al. Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials[J]. Energy,2016,106:221-230. doi: 10.1016/j.energy.2016.03.035
    [4]
    ZHANG Z L, ZHANG X X, SHI H F, et al. Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core[J]. Textile Research Journal,2015,86(5):493-501.
    [5]
    LI W, ZHANG R, JIANG N, et al. Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage[J]. Energy,2013,57:607-614. doi: 10.1016/j.energy.2013.05.007
    [6]
    PEI D F, CHEN S, LI W, et al. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ether)s with various molecular weights as phase change materials[J]. Polymers,2018,10(2):197-215. doi: 10.3390/polym10020197
    [7]
    BEHZADI S, FARID M M. Long term thermal stability of organic PCMs[J]. Applied Energy,2014,; 122:11-16.
    [8]
    Li W, GENG X Y, HUANG R, et al. Microencapsulated comb-like polymeric solid-solid phase change materials via in-situ polymerization[J]. Polymers,2018,10(2):172-178. doi: 10.3390/polym10020172
    [9]
    AMIN M, PUTRA N, KOSASIH E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering,2017,112:273-280. doi: 10.1016/j.applthermaleng.2016.10.085
    [10]
    MEMON S A. Phase change materials integrated in building walls: A state of the art review[J]. Renewable & Sustainable Energy Reviews,2014,31:870-906.
    [11]
    宋晓庆, 姜猛进, 叶光斗, 等. 石蜡/聚乙烯醇相变储能纤维的制备与表征[J]. 复合材料学报, 2008, 25(1):17-22. doi: 10.3321/j.issn:1000-3851.2008.01.003

    SONG X Q, JIANG M J, YE G D, et al. Preparation and characterization of paraffin/polyvinyl alcohol phase change fibers for energy storage[J]. Acta Materiae Compositae Sinica,2008,25(1):17-22(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.003
    [12]
    CHEN C, WANG L, HUANG Y. Electro spun phase change fibers based on polyethylene glycol/cellulose acetate blends[J]. Applied Energy,2011,88:3133-3139. doi: 10.1016/j.apenergy.2011.02.026
    [13]
    CAO R R, LI X, CHEN S, et al. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites[J]. Energy,2017,138:157-166. doi: 10.1016/j.energy.2017.07.049
    [14]
    CAO R R, LIU H H, CHEN S, et al. Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material[J]. Composites Science and Technology,2017,149:262-268. doi: 10.1016/j.compscitech.2017.06.019
    [15]
    O"LEARY K A, PAUL D R. Physical properties of poly(n-alkyl acrylate) copolymers. Part 2. Crystalline/non-crystalline combinations[J]. Polymer,2006,47:1245-1258. doi: 10.1016/j.polymer.2005.12.006
    [16]
    李树芹, 陈赛, 王学晨, 等. 梳状相变聚合物为芯材的复合调温纤维的制备及热性能[J]. 复合材料学报, 2018, 35(1):8-15.

    LI S Q, CHEN S, WANG X C, et al. Fabrication and properties of wet-spun thermo-regulating fibers with a novel comb-like phase change polymer core[J]. Acta Materiae Compositae Sinica,2018,35(1):8-15(in Chinese).
    [17]
    BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of Zeolitic Imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943. doi: 10.1126/science.1152516
    [18]
    YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Advanced Materials,2018,30(37):1704303-1704338. doi: 10.1002/adma.201704303
    [19]
    BANGERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society,2009,131(11):3875-3877. doi: 10.1021/ja809459e
    [20]
    EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295:469-472. doi: 10.1126/science.1067208
    [21]
    YAGHI O M, O"KEEFFE M, OCKWING N W, et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423(6941):705-714. doi: 10.1038/nature01650
    [22]
    CHEN S, YU Y, CAO R R, et al. Fabrication and characterization of novel shape-stabilized phase change materials based on P(TDA-co-HDA)/GO composites[J]. Polymers,2019,11(7):1113-1125. doi: 10.3390/polym11071113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1396) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return