Volume 38 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002
Citation: LIU Yang, ZHUANG Weimin. Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3563-3577. doi: 10.13801/j.cnki.fhclxb.20210105.002

Joining process and mechanical properties of warm self-piercing riveting for carbon fiber reinforced polymer and aluminum alloy

doi: 10.13801/j.cnki.fhclxb.20210105.002
  • Received Date: 2020-11-16
  • Accepted Date: 2020-12-28
  • Available Online: 2021-01-06
  • Publish Date: 2021-11-01
  • To investigate the damage in self-piercing riveting (SPR) of carbon fiber reinforced polymer (CFRP) and aluminum alloy, three groups of SPR joints with typical ply angles were prepared, and the effects of ply angles on the macroscopic damage morphology of joints were studied. The effects of temperature on the mechanical properties and failure of CFRP were studied. Based on the thermal mechanical properties of CFRP, the warm self-piercing riveting (WSPR) process for CFRP and aluminum alloy was innovatively proposed for the purpose of reducing joint damage. The damage difference of CFRP in the joint obtained by two riveting processes was compared. The effect of ply angle on mechanical properties and failure process of WSPR joints in CFRP and aluminum alloy was investigated. The results show that macro-cracks tend to appear in the area near the rivet head at room riveting temperature, mainly in the form of matrix cracks parallel to the fiber direction and fiber cracks perpendicular to the fiber direction. At the glass transition temperature of the resin matrix, the ductility of CFRP in transverse and shear directions is greatly improved, resulting in no macro-cracks on the surface of CFRP sheet, and the delamination area is reduced in the WSPR joints. The ply angle affects the tensile-shear properties and failure process of the joint and the joint with [0/90/0]s laminated structure has the optimist mechanical properties.

     

  • loading
  • [1]
    PRAMANIK A, BASAK A K, DONG Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review[J]. Composites: Part A,2017,101:1-29. doi: 10.1016/j.compositesa.2017.06.007
    [2]
    宋燕利, 杨龙, 郭巍, 等. 面向汽车轻量化应用的碳纤维复合材料关键技术[J]. 材料导报, 2016, 30(17):16-25.

    SONG Yanli, YANG Long, GUO Wei, et al. A survey on key technologies for carbon fiber-reinforced plastics with applications to automobile lightening[J]. Materials Review,2016,30(17):16-25(in Chinese).
    [3]
    许现哲, 刘通, 王文丽, 等. 碳纤维增强聚合物复合材料车身T型接头静态性能与失效机制[J]. 复合材料学报, 2019, 36(10):2227-2234.

    XU Xianzhe, LIU Tong, WANG Wenli, et al. Performance and failure mechanics of carbon fiber reinforced polymer composite T-joint in quasi-static loading for automobile structures[J]. Acta Materiae Compositae Sinica,2019,36(10):2227-2234(in Chinese).
    [4]
    李永兵, 马运五, 楼铭, 等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报, 2020, 56(6):125-146. doi: 10.3901/JME.2020.06.125

    LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering,2020,56(6):125-146(in Chinese). doi: 10.3901/JME.2020.06.125
    [5]
    黄志超, 程露, 涂林鹏, 等. 不同纤维铺层玻璃-碳纤维混杂复合材料与铝合金自冲铆接强度对比[J]. 塑性工程学报, 2020, 27(10):54-61. doi: 10.3969/j.issn.1007-2012.2020.10.009

    HUANG Zhichao, CHENG Lu, TU Linpeng, et al. Comparison on self-piercing riveting strength of glass-carbon fiber hybrid composites with different fiber layers and aluminum alloy[J]. Journal of Plasticity Engineering,2020,27(10):54-61(in Chinese). doi: 10.3969/j.issn.1007-2012.2020.10.009
    [6]
    LIU Y, ZHUANG W M. Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets[J]. Thin-Walled Structures,2019,144:106340. doi: 10.1016/j.tws.2019.106340
    [7]
    刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11):1825-1830. doi: 10.11896/cldb.18030256

    LIU Yang. ZHUANG Weimin, SHI Hongda. Influencing factors on fatigue performance of self-piercing riveted joints: A review[J]. Materials Reports,2019,33(11):1825-1830(in Chinese). doi: 10.11896/cldb.18030256
    [8]
    LIANG J, JIANG H, ZHANG J, et al. Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052[J]. Archives of Civil and Mechanical Engineering,2019,19:240-250. doi: 10.1016/j.acme.2018.11.001
    [9]
    刘洋, 庄蔚敏, 解东旋. 纤维增强复合材料与铝合金自冲铆接研究进展[J]. 材料导报, 2020, 34(11):11053-11063. doi: 10.11896/cldb.19040060

    LIU Yang. ZHUANG Weimin, XIE Dongxuan. Research progress on self-piercing riveting of fiber reinforced polymers and aluminium alloy sheets[J]. Materials Reports,2020,34(11):11053-11063(in Chinese). doi: 10.11896/cldb.19040060
    [10]
    VORDERBRÜGGEN J, MESCHUT G. Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain[J]. Composite Structures,2019,230:111533. doi: 10.1016/j.compstruct.2019.111533
    [11]
    MESCHUT G, GUDE M, AUGENTHALER F, et al. Evaluation of damage to carbon-fiber composites induced by self-pierce riveting[J]. Procedia CIRP,2014,18:186-191. doi: 10.1016/j.procir.2014.06.129
    [12]
    GAY A, ROCHE J, LAPEYRONNIE P, et al. Non-destructive inspection of initial defects of PA6.6-GF50/ aluminum self-piercing riveted joints and damage monitoring under mechanical static loading[J]. International Journal of Damage Mechanics,2017,26(8):1127-1146. doi: 10.1177/1056789516648370
    [13]
    RAO H M, KANG J, HUFF G, et al. Impact of rivet head height on the tensile and fatigue properties of lap shear self-pierced riveted CFRP to aluminum[J]. SAE International Journal of Materials and Manufacturing,2017,10(2):167-173. doi: 10.4271/2017-01-0477
    [14]
    RAO H M, KANG J, HUFF G, et al. Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite[J]. International Journal of Fatigue,2018,113:11-22. doi: 10.1016/j.ijfatigue.2018.03.031
    [15]
    HIRSCH F, MÜLLER S, MACHENS M, et al. Simulation of self-piercing rivetting processes in fibre reinforced polymers: Material modelling and parameter identification[J]. Journal of Materials Processing Technology,2017,241:164-177. doi: 10.1016/j.jmatprotec.2016.10.010
    [16]
    WELF-GUNTRAM D, REINHARD M, RAIK G, et al. Numerical and experimental analysis of self piercing riveting process with carbon fiber-reinforced plastic and aluminium sheets[J]. Key Engineering Materials,2013:554-557.
    [17]
    LIU Y, ZHUANG W, WU S, et al. Damage to carbon fibre reinforced polymers (CFRP) in hole-clinched joints with aluminium alloy and CFRP[J]. Composite Structures,2020,234:111710. doi: 10.1016/j.compstruct.2019.111710
    [18]
    HE X C, WANG Y F, LU Y, et al. Self-piercing riveting of similar and dissimilar titanium sheet materials[J]. The International Journal of Advanced Manufacturing Technology,2015,80(9-12):2105-2115. doi: 10.1007/s00170-015-7174-3
    [19]
    庄蔚敏, 赵文增, 解东旋, 等. 22MnB5高强钢/7075铝合金热铆接冷模具淬火无铆钉铆接研究[J]. 机械工程学报, 2017, 53(20):106-112. doi: 10.3901/JME.2017.20.106

    ZHUANG Weimin, ZHAO Wenzeng, XIE Dongxuan, et al. Research on hot riveting quenching clinching of the high strength steel 22MnB5 and aluminum alloy 7075[J]. Journal of Mechanical Engineering,2017,53(20):106-112(in Chinese). doi: 10.3901/JME.2017.20.106
    [20]
    LAMBIASE F, ILIO A D. Mechanical clinching of metal–polymer joints[J]. Journal of Materials Processing Technology,2015,215:12-19. doi: 10.1016/j.jmatprotec.2014.08.006
    [21]
    LIN P C, LIN J W, LI G X, et al. Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets[J]. The International Journal of Advanced Manufacturing Technology,2018,97(1):529-541.
    [22]
    中国国家标准化管理委员会(标准制定单位). 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of oriented fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [23]
    中国国家标准化管理委员会(标准制定单位). 聚合物基复合材料纵横剪切试验方法: GB/T 3355—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for in-plane shear response of polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [24]
    American Society for Testing and Materials. Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D5379/D5379M—2019[S]. West Conshohocken, United States: American Society for Testing and Materials International, 2019.
    [25]
    冷杨松, 李迪, 曹凡, 等. 双相钢车身板DP780的温热成形本构模型[J]. 济南大学学报(自然科学版), 2019, 33(4):301-307.

    LENG Yangsong, LI Di, CAO Fan, et al. Constitutive model of dual-phase steel body panel DP780 in warm forming[J]. Journal of University of Jinan(Science and Technology),2019,33(4):301-307(in Chinese).
    [26]
    CORONADO P, ARGUELLES A, VINA J, et al. Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination[J]. International Journal of Solids and Structures,2012,49(21):2934-2940. doi: 10.1016/j.ijsolstr.2012.05.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(2)

    Article Metrics

    Article views (1629) PDF downloads(237) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return